Last updated Jan 2006

for version 20070904 (GCC 2.8.1, 2.95.x, 3.2.x, 3.3.x or 3.4.x)

Copyright (©) 1988-2006 Free Software Foundation, Inc.

For GPC 20070904 (GCC 2.8.1, 2.95.x, 3.2.x, 3.3.x or 3.4.x)

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “GNU General
Public License”, “The GNU Project”, “The GNU Manifesto” and “Funding for Free Soft-
ware” are included exactly as in the original, and provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“GNU General Public License”, “The GNU Project”, “The GNU Manifesto” and “Funding
for Free Software” and this permission notice, may be included in translations approved by
the Free Software Foundation instead of in the original English.

Short Contents

GNUPascal v o oo e e e sttt nneeeeessesssssossaccssns 1
Welcome to GNU Pascal ... ¢ oo veee e i iniieeeneneensnns 3
1 Some of GPC’s most interesting features. D
2 New Features of GNU Pascal. . . . v v oo v e v ven e e e nnnn 11
3 The GNU Pascal Frequently Asked Questions List. 19
4 How to download, compile and install GNU Pascal. 33
5 Command Line Options supported by GNU Pascal. 43
6 The Programmer’s Guideto GPC 59
7 A QuickStart Guide from Borland Pascal to GNU Pascal. . . 261
8 The Alphabetical GPC Language Reference 285
9 Pascal keywords and operators supported by GNU Pascal. . 497

10 Where to get support for GNU Pascal; how to report bugs. . 505
11 The GNU Pascal To-Do List. v v veeeeeeeeeeeeeaa. H13
12 The GPC Source Reference . .« o v v v v v v v v eveveeeeens 527
Appendix A GNU GENERAL PUBLIC LICENSE 547
Appendix B GNU LESSER GENERAL PUBLIC LICENSE .. 559
Appendix C DEMO COPYING .. oo i v e it ienenennnns 569
Appendix D Contributors to GNU Pascal.o ou .. 571
Appendix E Resources For Use With GPC. Y
Appendix ' The GNU Project. + v v v v vt vveeeeennns 581

INdex-GPC v v vt e it e et ettt ettt e veooeooeooeooeons 591

11

The GNU Pascal Manual

Table of Contents

GNU Pascal ... ittt e it e i eeennn.
Welcome to GNU Pascal

1 Some of GPC’s most interesting features. ...

2 New Features of GNU Pascal..............

11

3 The GNU Pascal Frequently Asked Questions

List. oo i et e e e

3.1 GNUPascal ...
3.1.1 What and why?,

3.1.3 Is it compatible with Turbo Pascal (R)?.........
3.1.4 Which platforms are supported by GNU Pascal? . .
3.2 Imstalling GPC..... ...
3.21 Whattoreadmnext.............................
3.2.2 Which components do I need to compile Pascal
COAET .
3.2.3 How do I debug my Pascal programs?...........

3.3 GNU Pascal on the DJGPP (MS-DOS) platform..........
3.3.1 Whatis DJGPP?.....
3.3.2 If you need more information...................
3.3.3 What do I download?
3.3.4 How do I install the compiler?
3.3.5 I cannot read the Info documentation!...........
3.3.6 GPCsaysinoDPMI...........................
3.3.7 I have troubles with assembly code..............
3.3.8 Tell me how to do DPMI, BIOS and other DOS
related things.

19

19
19
19
20
20
21
21

21
21
22
23
23
24
24
24
24
25
26
26
26

26

3.3.9 1 got an exception when accessing an ‘array [1 ..

4000000] of Byte’. ...t

34 StUINGS « oo
3.4.1 What’s this confusion about strings?

3.4.2 Overlaying strings in variant records

3.4.3 Why does ‘s[0]’ not contain the length?

3.4.4 Watch out when using strings as parameters.

3.4.5 Support for BP compatible short strings.........

28
28
28
29
29
30
30

iii

v The GNU Pascal Manual

3.4.6 What about C strings?......................... 30
35 Getting Help. ... 31
3.6 Miscellaneous ... 31
3.6.1 I want to contribute; where do I start? 31
3.6.2 Where is the GNU Pascal web site? 31
3.6.3 About this FAQ........... 31

4 How to download, compile and install GNU

Pascal........... ... 33
4.1 Where and what to download 33
4.2 Installation instructions for a GPC binary distribution 35
4.3 Compiling GPC 36
4.4 Compilation notes for specific platforms.................. 40

4.4.1 MS-DOS with DJGPP 40

4.4.2 MS-DOS or OS/2 with EMX 40

4.4.3 MS Windows 95/98/NT........................ 40
4.5 Building and Installing a cross-compiler.................. 40
4.6 Crossbuilding a compiler................................ 41

5 Command Line Options supported by GNU

Pascal..........ciiiiiiiiiinn.. 43
5.1 GPC options besides those of GCC. 43
5.2 The most commonly used options to GPC................ 54

6 The Programmer’s Guide to GPC 59
6.1 Source Structuresoiiiiiiiii .. H9
6.1.1 The Source Structure of Programs 59
6.1.2 Label Declaration.............................. 60
6.1.3 Constant Declaration 60
6.1.4 Type Declaration.............................. 62
6.1.5 Variable Declaration 64
6.1.6 Subroutine Declaration......................... 64
6.1.6.1 The Procedure........................ 65

6.1.6.2 The Function 65

6.1.6.3 The Operator......................... 66

6.1.6.4 Subroutine Parameter List Declaration.. 66

6.1.7 StatementsS............. 68
6.1.7.1 Assignment........................... 68

6.1.7.2 begin end Compound Statement 69

6.1.7.3 if Statement 69

6.1.7.4 case Statement........................ 69

6.1.7.5 for Statement......................... 70

6.1.7.6 while Statement....................... 71

6.1.7.7 repeat Statement 72

6.1.7.8 asmInline............................ 72

6.1.7.9 with Statement 72

6.1.7.10 goto Statement 72

6.1.7.11 Procedure Call....................... 72

6.1.7.12 The Declaring Statement 72
6.1.7.13 Loop Control Statements............. 73
6.1.8 Import Part and Module/Unit Concept.......... 73
6.1.8.1 The Source Structure of ISO 10206
Extended Pascal Modules.................. 73
6.1.8.2 The Source Structure of UCSD/Borland
Pascal Units............, 76
6.2 Data Types.o 7
6.2.1 Type Definition 7
6.2.2 Ordinal Types........cooiiiiiiiiiiiiia. .. 78
6.2.3 Integer Types 78
6.2.3.1 The CPU’s Natural Integer Types...... 78
6.2.3.2 The Main Branch of Integer Types 79
6.2.3.3 Integer Types with Specified Size....... 79
6.2.3.4 Integer Types and Compatibility 79
6.2.3.5 Summary of Integer Types............. 80
6.2.4 Built-in Real (Floating Point) Types............ 82
6.2.5 Strings Types ... 82
6.2.6 Character Types.............. i .. 82
6.2.7 FEnumerated Types............. 83
6.2.8 File Typescoiiii .. 83
6.2.9 Boolean (Intrinsic)............................. 83
6.2.10 Pointer (Intrinsic) 84
6.2.11 Type Definition Possibilities................... 84
6.2.11.1 Subrange Types...................... 84
6.2.11.2 Array Types..............oiia... 85
6.2.11.3 Record Types........................ 85
6.2.11.4 Variant Records...................... 86
6.2.11.5 EP’s Schema Types including ‘String’
... 87
6.2.11.6 Set Types 90
6.2.11.7 Pointer Types 91
6.2.11.8 Procedural and Functional Types 92
6.2.11.9 Object Types......ccooviiiiiii.. 93
6.2.11.10 Initial values to type denoters........ 94
6.2.11.11 Restricted Types.................... 94
6.2.12 Machine-dependencies in Types................ 95
6.2.12.1 Endianness.......................... 96
6.2.12.2 Alignment........................... 97
6.3 OPEratorsttt 97
6.3.1 Built-in Operators 97
6.3.2 User-defined Operators......................... 97
6.4 Procedure And Function Parameters..................... 98
6.4.1 Parameters declared as ‘protected’ or ‘const’... 98
6.4.2 The Standard way to pass arrays of variable size.. 98
6.4.3 BP’s alternative to Conformant Arrays.......... 99

6.5 Accessing parts of strings (and other arrays) 99

vi

6.6
6.7
6.8
6.9
6.10

6.11

6.12
6.13
6.14
6.15

The GNU Pascal Manual

Pointer Arithmetics 99
Type Casts . ..o 100
Object-Oriented Programming 102
Compiler Directives And The Preprocessor.............. 105
Routines Built-in or in the Run Time System 108
6.10.1 File Routines............... 108
6.10.2 String Operations 111
6.10.3 Accessing Command Line Arguments 112
6.10.4 Memory Management Routines............... 113
6.10.5 Operations for Integer and Ordinal Types 113
6.10.6 Complex Number Operations................. 114
6.10.7 Set Operationsooiiiiiii .. 115
6.10.8 Date And Time Routines..................... 116
Interfacing with Other Languages 117
6.11.1 Importing Libraries from Other Languages 117
6.11.2 Exporting GPC Libraries to Other Languages.. 119
Notes for Debugging................ ... 119
How to use I18N in own programs..................... 120
Pascal declarations for GPC’s Run Time System 122
Units included with GPC............ 171
6.15.1 BP compatibility: CRT & WinCRT, portable, with
many extensions................... ..., 172
6.15.2 BP compatibility: Dos....................... 189
6.15.3 Overcome some differences between Dos and Unix
... 194
6.15.4 Higher level file and directory handling........ 196
6.15.5 Arithmetic with unlimited size and precision... 198
6.15.6 Turbo Power compatibility, etc................ 211
6.15.7 Primitive heap checking...................... 216
6.15.8 Internationalization....................... ... 217
6.15.9 ‘MD5’ Message Digests........................ 222
6.15.10 BP compatibility: Overlay 223
6.15.11 Start a child process, connected with pipes, also on
Dos. .o 225
6.15.12 BP compatibility (partly): ‘Port’, ‘PortW’ arrays
... 229
6.15.13 BP compatibility: Printer, portable.......... 231
6.15.14 Regular Expression matching and substituting
... 233
6.15.15 BP compatibility: Strings................... 238
6.15.16 Higher level string handling 239
6.15.17 BP compatibility: System................... 245
6.15.18 Some text file tricks 252
6.15.19 Trap runtime errors......................... 253
6.15.20 BP compatibility: Turbo3................... 256

6.15.21 BP compatibility: WinDos 257

7 A QuickStart Guide from Borland Pascal to

GNU Pascal.ciiiiin... 261
7.1 BP Compatibility 261
7.2 BP Incompatibilities............. L. 261
7.2.1 String type.....oovmii 262
7.2.2 Qualified identifiers, 262
7.2.3 Assembler........ 262
7.2.4 Move; FillChar 263
725 Realtype.... ... 263
7.2.6 Graphunit............ 263
727 OOPunits........... ..., 263
7.2.8 Keep; GetIntVec; SetIntVec 264
729 TFDDs ... 264
7.2.10 Mem; Port; Ptr; Seg; Ofs; PrefixSeg; etc. 2064
7.2.11 Endianness assumptions...................... 264
7.2.12 - -borland-pascal - disable GPC extensions 265
7.2.13 -w - disable all warnings 265
7.2.14 - -uses=System - Swap; HeapError; etc. 266
7.2.15 -D_BP_TYPE_SIZES__ - small integer types etc.
... 266
7.2.16 - -pack-struct - disable structure alignment 266
7.2.17 -D_BP_RANDOM__ - BP compatible pseudo
random number generator 266
7.2.18 -D_BP_UNPORTABLE_ROUTINES__ - Intr;
DosVersion; etc. ... 266
7.2.19 -D_BP_PARAMSTR.0__ - BP compatible
ParamStr (0) behaviour 267
7.3 IDE versus command line.............................. 267
7.4 COmmeEntSttt et 269
7.5 BP Compatible Compiler Directives 269
7.6 Units, GPI files and Automake 269
7.7 Optimizationomei e, 271
7.8 Debugging........ ... 271
7.9 ODbjects ..o 271
7.10 Strings in BP and GPC............. 272
7.11 Typed Constants.oooiniiiinin .. 273
7.12 Bit, Byte and Memory Manipulation 274
7.13 User-defined Operators in GPC 275
7.14 Data Typesin BP and GPC 276
7.15 BP Procedural Types.............iiiiiiii... 277
TA6 Files ..o 278
7.17 Built-in Constants 278
7.18 Built-in Operators in BP and GPC.................... 278
7.19 Built-in Procedures and Functions..................... 278
7.20 Special Parameters........... 279
7.21 Miscellaneoust 279
7.22 BP and Extended Pascal 280
7.23 Portability hints 281

vii

viii The GNU Pascal Manual
8 The Alphabetical GPC Language Reference

....................................... 285
A DS 285
absolute. 286
ADSETACE . . ot 288
Addr. .. 288
AlignOf . ..o 289
all 290
AN .. 290
and then 291
and_then 292
AnsiChar. 293
AnyFileo 294
Append 295
ATCCOS . o 296
ATCSIN . .o 297
ArcTano 297
AT 298
ALTAY « v e v et et et et e e e e e e 298
A e e e e e e 300
ASTIL . o v et et et e e e e 300
ASINNAIIIE « .« v v et e et e et et e e e e e e 301
ASSEIt . .o 301
ASSIGN o oo 302
Assigned 302
attribute 303
Degin . . 305
Bind 306
bindable. 306
Binding 307
BindingType . ..o 307
BitSizeOf.o 308
BlockRead 309
BlockWrite . ..o 310
Boolean 310
Breako 311
Byte . o 312
ByteBool. o 312
ByteCard 313
Bytelnt ... 314
C ot e e 314
Card . ..o 315
Cardinal 315
7= 1< Pt 316
CBoolean 318
CCardinal 318
Char . ..o 319

Cr 321
CINteger . ..o 321
clanguage. 322
ClaSS . oo 322
CloSE ot e 323
CIpIX .o 323
COMID .« et 324
CompilerAssert 324
Complex . ..o 325
Concab 326
CONJUZALE . . o vttt et e e 327
COMSE . ottt 327
CONSEITUCHOT . . . oo 328
Continueo 329
oDy + et 330
08 e e 330
CSETING « v v 331
CString2Stringo oot 332
CStringCopyString 332
CurrentRoutineName. 333
CWoOrd . ..o 333
Cycle . oo 334
Date ... 335
Dec . .o 33D
DefineSize 336
Delete. ..o 337
destructor 337
Discard 338
Dispose 338
V. 339
O 340
Double. ... 340
AOWNEO . . oo 341
ClSE . o 342
Empty ... 343
<Y 8 e 343
EOF .. 344
EOLn . ..o 344
EpsRealo 345
EQ 345
EQPad. 346
Eraseo 346
EXCEDE oot 346
Exclude 347
ExXit . 348
XD . o 349
EXPOTE .o 349

ix

The GNU Pascal Manual

Extend. 351
Extended. 352
external 353
Fail 303
False. 354
2 354
le . 355
FilePos. ..o 356
FileSizeo 356
FillChar. 356
finalization 357
Finalize 357
finally 358
Flush ... 358
BOT 359
FormatString 360
forward 360
Frac ... 361
FrameAddress 361
FreeMem 362
TUNCHION . .« ot 363
GE . 363
GEPad 363
T 364
GetMeIm 364
GetTimeStampo 365
BOLO .o 366
G 366
GTPad. ... 367
Halt .. 367
High ..o 368
5 369
I . 370
implementation 370
IIPOTE oot 371
10 P 372
InC. .o 372
Include. 373
Index ... 374
inherited 375
initialization 375
Initialize 376
InOutRes . ..o 376
Input ... 377
Insert 377
It . 377
Integer 378

INtEIface. . ..o 379

INberTupt . .. 380
IOResulto 380
IS ot 380
label ... 381
LastPosition 381
LE . 382
Leave . ..o 382
Length . ..o 383
LEPad 383
Drary ... 384
17 384
LoCaseo 385
LongBool. 385
LongCardo oo 386
LongestBool 386
LongestCard 387
LongestInt 388
LongestReal 389
LongestWord o 389
LongInt 390
LongReal. 391
LongWordo 391
LOW . .o 392
LTPad 393
Mark ..o 394
A ottt 394
MaxChar. ... 34
MaxInt. 39D
MaxReal 395
MedBool 396
MedCard 396
MedInt. 39T
MedReal 398
MedWordo 398
M. e 399
MinReal. 399
MEKDAr .o 400
MO . oo 401
module. 401
Move ..o 402
MoveLeft 402
MoveRight 402
0 E20 01 PP 403
NE 404
LTS 405
NEPad 405

xi

xii The GNU Pascal Manual

NewCStringo 407
051 407
80] v 408
Null .o 409
ODJeCt . ot 410
Odd ... 411
Of o 411
6) T 412
ONY o 412
OPETALOT . . . ottt 413
) 413
Ord . .o 414
OF ClSC. . ot 415
Or_€elSe ..o 416
Otherwise 417
OULPUL . . oot 418
overload 418
OVEITIAE . . . ot e e 419
Pack 419
packed 420
Page 421
PAnsiChar 421
ParamCount............ . 422
ParamStr 423
PChar ... 423
P 424
PODJectType ..o 424
Pointer. 425
Polar 426
PoS .o 426
Position 427
POW ettt e 427
Pred 428
Private . .o 429
PrOCEAUTE . .\ ottt et e e e e e e 429
PTOZGTAIIL . .« .« ettt et et e e e et e e e e e e e e 430
PTOPEILY . oottt 430
protected 431
PtrCard. 431
PtrDiffType . .o 432
PtrInt. 432
PtrWord 433
PUDLIC . .o 434
published. 434
Put . 435
qualified. 435
LIS .« ottt e 436
Random. 436

Randomize 436
R 437
Read.o o 437
Readlno 438
ReadStr. 438
ReadString 439
Real ... 439
TECOTA . o vttt e e e e 440
Release. 441
Rename 442
TEPEAL . . oo 442
Reset ..o 443
residentot 444
restricted 444
Result ... 445
Return 445
ReturnAddress. 446
Rewrite o 446
RmDir ..o 447
Round 448
RunError.o 449
SCCK . 449
SeekEOF 450
SeekEOLN . ..o 450
SeekRead 451
SeekUpdate 451
SEekWIIte . ..ot 452
SEGINEIIE . . oottt 452
Self L 452
Sl L 453
SetFileTimeo 454
SetLength ... 454
Set YD . et 455
Shl . 457
ShortBool 458
ShortCard 458
ShortInt. 459
ShortReal 460
ShortWord 460
A 461
308 462
SIngle . ..o 462
S1zeOf .o 463
SIZETYPE oot 463
Smalllnt. 464
0) 465
SAR . .o 465
StandardError 466

xiii

xiv The GNU Pascal Manual

StandardInput 467
StandardOutput 467
StAErT . o 467
N 5 468
ST . o o 469
String2CStIing . . oo oo et 469
StringOf 469
SUDST o 470
SUCE .« o v et e e e 471
Xt e 472
then ... 473
Tame . .o 473
TimeStamp. 474
O 475
tobegin do...... ..o 476
toend do. ... 476
I . e 476
TIUE .« oo 477
TIUNC . oot 478
Truncate 479
2 479
By De 479
type Of oo 481
TypeOf . o 482
Unbind.o 483
165 483
Unpack 484
UNbI] . L 484
UPCaSE o vttt 485
Update. ..o 485
S .+ v v e et e e e e e e 485
2 487
value . ..o 488
722 488
72 LS 1 490
virtual ... 490
VOid . .o 491
While. ..o 491
Wit . 492
Word ..o 493
WordBool 493
WEIIte . .o 494
WriteLn 495
WIIteStr .o 495
b0 496

9 Pascal keywords and operators supported by
GNUPascal.ciiiiiien... 497

10 Where to get support for GNU Pascal; how to

report bugs............. .. i i, 505
10.1 The GPC Mailing List.......... 505
10.2 The GPC Mailing List Archives....................... 506
10.3 Newsgroups relevant to GPC.......................... 506
10.4 Where to get individual support for GPC 507
10.5 If the compiler crashes 507
10.6 How to report GPCbugs............................. 507
10.7 Running the GPC Test Suite.......................... 511

11 The GNU Pascal To-Do List............. 513
11.1 Known bugsin GPC 513

11.2 Features planned for GPC 514

11.2.1 Planned features: Strings 514

11.2.2 Planned features: OOP 514

11.2.3 Planned features: Other types................ 515

11.2.4 Planned features: Misc....................... 516

11.2.5 Planned features: Utilities.................... 516

11.3 Problems that have been solved 517

12 The GPC Source Reference 527

12.1 The Pascal preprocessorcooviiiinin... 527

12.2 GPC’s Lexical Analyzer 528
12.2.1 Lexer problems.............................. 529
12.2.2 BP character constants 529
12.2.3 Compiler directives internally................. 531
12.3 Syntax parsing: GPC’s Parser......................... 532
12.3.1 Conflicts in the Pascal syntax 533

12.3.2 So many keywords, so many problems 534
12.3.3 ‘forward’, ‘near’ and ‘far’ as weak keywords.. 535

12.4 Tree Nodes 535
12.5 Parameter Passing 537
12.6 GPI files — GNU Pascal Interfaces..................... 538
12.7 GPC’s Automake Mechanism — How it Works 542
12.8 Files that make up GPC.............................. 543
12.9 Planned features 543

Appendix A GNU GENERAL PUBLIC

LICENSEciii i i iiiiennn. 547

Appendix B GNU LESSER GENERAL PUBLIC

LICENSE it i iiennn. 559

LGPL Preamble 559
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION 560

How to Apply These Terms to Your New Libraries 567

XVvi The GNU Pascal Manual
Appendix C DEMO COPYING............ 569

Appendix D Contributors to GNU Pascal. .. 571

Appendix E Resources For Use With GPC.

....................................... 5TT
Appendix F The GNU Project. 581
F.1 The GNU Manifesto 582
F.1.1 What’s GNU? Gnu’s Not Unix!................ 582
F.1.2 Why I Must Write GNU 583
F.1.3 Why GNU Will Be Compatible with Unix. 583
F.1.4 How GNU Will Be Available 583
F.1.5 Why Many Other Programmers Want to Help .. 583
F.1.6 How You Can Contribute..................... 584
F.1.7 Why All Computer Users Will Benefit 584

F.1.8 Some Easily Rebutted Objections to GNU’s Goals
... 585
F.2 Funding Free Software 589

GNU Pascal 1

GNU Pascal

This manual documents how to run, install and maintain the GNU Pascal Compiler
(GPC), as well as its new features and incompatibilities, and how to report bugs. It corre-
sponds to GPC 20070904 (GCC 2.8.1, 2.95.x, 3.2.x, 3.3.x or 3.4.x).

The GNU Pascal Manual

Welcome to GNU Pascal . .. 3

Welcome to GNU Pascal ...

... the free 32/64-bit Pascal compiler of the GNU Compiler Collection (GNU CC or
GCC). It combines a Pascal front-end with the proven GCC back-end for code generation
and optimization. Other compilers in the collection currently include compilers for the Ada,
C, C++, Objective C, Chill, FORTRAN, and Java languages. Unlike utilities such as p2c,
this is a true compiler, not just a converter.

This version of GPC corresponds to GCC version 2.8.1, 2.95.x, 3.2.x, 3.3.x or 3.4.x.

The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU
Pascal or GPC) which

e combines the clarity of Pascal with powerful tools suitable for real-life programming,

e supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

e supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Del-
phi, Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,

e may be distributed under GNU license conditions, and

e can generate code for and run on any computer for which the GNU C compiler can
generate code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to
proceed to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of
Extended Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland
Pascal (version 7.0), has some features for compatibility to other compilers (such as VAX
Pascal, Sun Pascal, Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to
ease the interfacing with C and other languages in a portable way, and to work with files,
directories, dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational
and real numbers of unlimited size, internationalization, inter-process communication, mes-
sage digests and more. Demo programs show the usage of these units and of many compiler
features.

This manual contains

e an overview of some of GPC’s most interesting features, see Chapter 1 [Highlights]
page 5,

e a list of new features since the last release, see Chapter 2 [News|, page 11,
e the GNU Pascal Frequently Asked Questions List, see Chapter 3 [FAQ)], page 19,

e installation instructions, see Chapter 4 [Installation]|, page 33,

e a QuickStart Guide for programmers used to the Turbo Pascal/Borland Pascal com-
piler, see Chapter 7 [Borland Pascal], page 261,

e a list of command-line options to invoke the compiler, see Chapter 5 [Invoking GPC],
page 43,

e the Programmer’s Guide to GPC, describing the Pascal programming language in gen-
eral and GPC specifc aspects, see Chapter 6 [Programming], page 59,

4 The GNU Pascal Manual

e the alphabetical GPC language reference, see Chapter 8 [Reference|, page 285,

e a list of keywords and operators supported by GNU Pascal, see Chapter 9 [Keywords|,
page 497,

e information on how to report bugs in GNU Pascal and how to get support, see Chap-
ter 10 [Support], page 505,

e the list of known bugs and things to do, also listing bugs fixed and features implemented
recently, see Chapter 11 [To Do|, page 513,

e some information for those who are interested in how GNU Pascal works internally, see
Chapter 12 [Internals], page 527,

e a list of contributors which tells you who developed and is maintaining GNU Pascal,
see Appendix D [Acknowledgments], page 571,

e the GNU General Public License which informs you about your rights and responsi-
bilites when using, modifying and distributing GNU Pascal, see Appendix A [Copying.
page 547,

e and other texts about Free Software and the GNU Project intended to answer questions
like “what is GNU?” you might have in mind now, see Appendix ' [GNUJ, page 581.

If you are familiar with Standard Pascal (ISO 7185) programming, you can probably
just go ahead and try to compile your programs. Also, most of the ISO Extended Pascal
Standard (ISO 10206) is implemented into GNU Pascal. The Extended Pascal features still
missing from GPC are set types with variable bounds and discriminated ordinal schema as
schema discriminants.

If you are a Borland Pascal programmer, you should probably start reading the Quick-
Start guide from BP to GNU Pascal, see Chapter 7 [Borland Pascal|, page 261. If you
are curious about the new features GPC offers, you can get an idea in the overview of
GPC highlights (see Chapter 1 [Highlights|, page 5), and read in more detail about them
in the Programmer’s Guide to GPC (see Chapter 6 [Programming|, page 59) and in the
alphabetical GPC Language Reference (see Chapter 8 [Referencel, page 285).

And, please, think about how you can contribute to the GNU Pascal project, too. Please
support our work by contributing yours in form of example programs, bug reports, docu-
mentation, or even actual improvements of the compiler.

All trademarks used in this manual are properties of their respective owners.

Chapter 1: Some of GPC’s most interesting features. 5

1 Some of GPC’s most interesting features.

The GNU Pascal Compiler (GPC) is, as the name says, the Pascal compiler of the GNU
family (http://www.gnu.org/software/gcc/). This means:

e GPC is a 32/64 bit compiler,

e does not have limits like the 64 kB or 640 kB limit known from certain operating
systems — even on those systems —,

e runs on all operating systems supported by GNU C, including

GNU Hurd,

Linux on Intel, AMDG64, Sparc, Alpha, S390, and all other supported types of
hardware,

the BSD family: FreeBSD, NetBSD, OpenBSD,

DOS with 32 bits, using DJGPP or EMX,

MS-Windows 9x/NT, using CygWin or mingw or MSYS,
0S/2 with EMX,

Mac OS X,

MIPS-SGI-TRIX,

Alpha-DEC-OSF,

Sparc-Sun-Solaris,

HP/UX,

and more (note: the runtime system only supports ASCII based systems; that includes
almost all of today’s systems, but a few IBM machines still use EBCDIC; on those, the
compiler might run, but the runtime support might need major changes),

e can act as a native or as a cross compiler between all supported systems,

e produces highly optimized code for all these systems,

e is Free Software (Open-Source Software) according to the GNU General Public License,
e is compatible to other GNU languages and tools such as GNU C and the GNU debugger.

The compiler supports the following language standards and quasi-standards:

ISO 7185 Pascal (see Appendix E [Resources|, page 577),
most of ISO 10206 Extended Pascal,

Borland Pascal 7.0,

parts of Borland Delphi, Mac Pascal and Pascal-SC (PXSC).

Some highlights:

e From Standard Pascal: Many popular Pascal compilers claim to extend Standard Pascal
but miss these important features.

— Conformant array parameters — the standardized and comfortable way to pass ar-

rays of varying size to procedures and functions. [Example (conformantdemo.pas)]

— Passing local procedures as procedural parameters — with full access to all variables

of the “parent” procedure. [Example (iteratordemo.pas)]

http://www.gnu.org/software/gcc/
http://www.gnu.org/software/hurd/
http://www.linux.org
http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.delorie.com/djgpp/
http://cygwin.com
http://www.mingw.org
http://www.mingw.org/msys.shtml
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org
http://www.gnu.org/copyleft/gpl.html

The GNU Pascal Manual

Automatic file buffers and standard ‘Get’ and ‘Put’ procedures. Read ahead from
files without temporary variables. [Example (filebufldemo.pas)] This allows you,
for instance, to validate numeric input from text files before reading without con-
version through strings. [Example (filebuf2demo.pas)]

True packed records and arrays. Pack 8 Booleans into 1 byte. [Example (pack-
demo.pas)]

Internal files. You don’t have to worry about creating temporary file names and
erasing the files later. [Example (intfiledemo.pas)]

Global ‘goto’. (Yes, ‘goto’ has its place when it is not restricted to the current
routine.) [Example (parserdemo.pas)]

Automatically set discriminants of variant records in ‘New’. [Example (variant-
demo.pas)]

Sets of arbitrary size. [Example (bigsetsdemo.pas)]

e From Extended Pascal:

Strings of arbitrary length. [Example (stringschemademo.pas)]

‘ReadStr’ and ‘WriteStr’. Read from and write to strings with the full comfort
of ‘ReadLn’/‘Writeln’. [Example (rwstringdemo.pas)]

System-independent date/time routines. [Example (datetimedemo.pas)]

Set member iteration: ‘for Ch in [’A’ .. ’Z’, ’a’ .. ’z’] do ...’ [Example
(bigsetsdemo.pas)]

Set extensions (symmetric difference, ‘Card’)

Generalized ‘Succ’ and ‘Pred’ functions (foo := Succ (bar, 5) ;).

Complex numbers. [Example (mandelbrot.pas)] [Example (parserdemo.pas)]
Exponentiation operators (‘pow’ and ‘*x’) for real and complex numbers.
Initialized variables. [Example (initvardemo.pas)]

Structured value constructors — build array or record values without using tempo-
rary variables.

Functions can return array or record values.

Result variables. [Example (resultvardemo.pas)]

Modules.

Non-decimal numbers in base 2 through 36: ‘base#number’.
‘MinReal’, ‘MaxReal’, ‘EpsReal’, ‘MaxChar’ constants.

Schemata — the Pascal way to get dynamic arrays without dirty tricks. [Example
(schemademo.pas)]

Local variables may have dynamic size. [Example (dynamicarraydemo.pas)]

Array Slice Access — access parts of an array as a smaller array, even on the left
side of an assignment [Example (arrayslicedemo.pas)]

e Compatible to Borland Pascal 7.0 with objects (BP):

Supports units, objects, ..., and makes even things like ‘absolute’ variables
portable. [Example (absdemo.pas)]

Comes with portable versions of the BP standard units with full source.

Chapter 1: Some of GPC’s most interesting features. 7

— True network-transparent CRT unit: You can run your CRT applications locally or
while being logged in remotely, without any need to worry about different terminal
types. Compatible to BP’s unit, but with many extensions, such as overlapping
windows. [Example (crtdemo.pas)]

— Fully functional GUI (X11) version of CRT (also completely network transparent).

— The ‘Random’ function can produce the same sequence of pseudo-random numbers
as BP does — if you need that instead of the much more elaborate default algorithm.

— Supports BP style procedural variables as well as Standard Pascal’s procedural
parameters. [Example (procvardemo.pas)]

— A ‘Ports’ unit lets you access CPU I/O ports on systems where this makes sense.
[Example (portdemo.pas)]

— Special compatibility features to help migrating from BP to GPC, like a ‘GPC for
BP’ unit which provides some of GPC’s features for BP, and some routines to access
sets of large memory blocks in a uniform way under GPC and BP (even in real
mode). [Example (bigmemdemo.pas)]

— Comes with a BP compatible ‘binobj’ utility. [Example (binobjdemo.pas)]
e From Borland Delphi:

— ‘abstract’ object types and methods

— classes

— ‘is’ and ‘as’ operators to test object type membership

— Comments with ‘//’

— Empty parameter lists with ‘()’

— Assertions

— A ‘SetLength’ procedure for strings makes it unnecessary to use dirty tricks like
assignments to the “zeroth character”.

— ‘Initialize’ and ‘Finalize’ for low-level handling of variables.
— ‘initialization’ and ‘finalization’ for units.

e From Pascal-SC (PXSC):
— User-definable operators. Add your vectors with ‘+’.

e Carefully designed GNU extensions help you to make your real-world programs
portable:

— 64-bit signed and unsigned integer types.

— Special types guarantee compatibility to other GNU languages such as GNU C.
Directives like ‘{$L foo.c} make it easy to maintain projects written in multiple
languages, e.g., including code written in other languages into Pascal programs
[Example (Pascal part) (c_gpc.pas)] [Example (C part) (c_gpc_c.c)],

— or including Pascal code into programs written in other languages. [Example
(Pascal part) (gpc_c_pas.pas)| [Example (Pascal unit) (gpc_c_unit.pas)] [Example
(C part) (gpc—c-c.c)]

— Extensions like ‘BitSize0f’ and ‘ConvertFromBigEndian’ help you to deal with
different data sizes and endianesses. [Example (endiandemo.pas)]

The GNU Pascal Manual

Little somethings like ‘DirSeparator’, ‘PathSeparator’, ‘GetTempDirectory’
help you to write programs that look and feel “at home” on all operating systems.

The ‘PExecute’ routine lets you execute child processes in a portable way that
takes full advantage of multitasking environments. [Example (pexecutedemo.pas)]
[Example (pexec2demo.pas)]

The GNU GetOpt routines give you comfortable access to Unix-style short and long
command-line options with and without arguments. [Example (getoptdemo.pas)]
Routines like ‘FSplit’ or ‘FSearch’ or ‘FExpand’ know about the specifics of the
various different operating systems. [Example (fexpanddemo.pas)]

The ‘FormatTime’ function lets you format date and time values, according to
various formatting rules. [Example (formattimedemo.pas)]

e Useful and portable GNU standard units:

A ‘Pipes’ unit gives you inter-process communication even under plain DOS. [Ex-
ample (pipedemo.pas)| [Demo process for the example (demoproc.pas)]

With the ‘RegEx’ unit you can do searches with regular expressions. [Example
(regexdemo.pas)]

The GNU MultiPrecision (‘GMP’) unit allows you to do arithmetics with integer,
real, and rational numbers of arbitrary precision. [Example: factorial (facto-
rial.pas)| [Example: fibonacci (fibonacci.pas)] [Example: power (power.pas)| [Ex-
ample: real power (realpower.pas)| [Example: pi (pi.pas)]

Posix functions like ‘ReadDir’, ‘StatFS’ or ‘FileLock’ provide an efficient, easy-to-
use and portable interface to the operating system. [Example (readdirdemo.pas)]
[Example (statfsdemo.pas)| [Example (filelockdemo.pas)]

A ‘DosUnix’ unit compensates for some of the incompatibilities between two fam-
ilies of operating systems. [Example (dosunixdemo.pas)]

An ‘MD5’ unit to compute MD5 message digests, according to RFC 1321. [Example
(md5demo.pas)]

A ‘FileUtils’ unit which provides some higher-level file and directory handling
routines. [Example (findfilesdemo.pas)]

A ‘StringUtils’ unit which provides some higher-level string handling routines.
[Example (stringhashdemo.pas)]

An ‘Intl’ unit for internationalization. [Example (gettextdemo.pas)| [Example
(localedemo.pas)]

A ‘Trap’ unit to trap runtime errors and handle them within your program. [Ex-
ample (trapdemo.pas)]

A ‘TFDD’ unit that provides some tricks with text files, e.g. a “tee” file which causes
everything written to it to be written to two other files. [Example (tfdddemo.pas)]

A ‘HeapMon’ unit to help you find memory leaks in your programs.

The demo programs mentioned above are available both on the WWW and in GPC
source and binary distributions.

Disadvantages:
e The GNU debugger (GDB) still has some problems with Pascal debug info.

Chapter 1: Some of GPC’s most interesting features. 9

e Compilation with GPC takes quite long.

Co-workers welcome!

Able, committed programmers are always welcome in the GNU Pascal team. If you want
to be independent of companies that you have to pay in order to get a compiler with more
restrictive licensing conditions that only runs on one operating system, be invited to join
the development team, Appendix D [Acknowledgments], page 571.

10

The GNU Pascal Manual

Chapter 2: New Features of GNU Pascal. 11

2 New Features of GNU Pascal.

GPC’s new or changed features since the last (non alpha/beta) GPC release are listed

here. Items without further description refer to new routines, variables or options.

Features implemented for compatibility to other compilers are marked with, e.g., ‘(B)’

for BP compatibility.

A few old and obsolete features have been dropped or replaced by cleaner, more flexible

or otherwise more useful ones. This might lead to minor problems with old code, but we
suppose they're rare and easy to overcome. Backward-incompatible changes are marked
with ‘(@)’.

support building libgpc as Mach shared library

‘GPC_Initialize’ and ‘GPC_Finalize’ available as user routines (to help building shared
libraries)

better warnings for unexpected results of string comparisons
handle ‘volatile’ attribute on types

allow ‘asm’ in any dialect (if the ‘asm’ keyword is enabled)
support for gee-4.1.x

preliminary support for gee-4.0.x

handle named exit from a method

check string parameters more strictly (@)

use at least integer precision for arithmetic (@)

refuse ‘--executable-file-name’ on names without a suffix
do not create ‘.gpi’ files from incorrect input

‘CWordBool’ type

allow passing variant selector by reference in default mode
‘noinline’ attribute

check for identifier redeclaration in records and parameter lists (@)
set constants are compatible with packed sets

‘ReadString’ and ‘String0f’ predefined routines (M)

pass discriminated string schema by value (@)

‘const var’ parameters

preliminary support for OOE class views (test/viewl[a-g].pas)
‘-—iso-goto-restrictions’ option

‘~-—preprocessed’ option

integrated preprocessor (@)
‘~-longjmp-all-nonlocal-labels’ is on by default on Darwin/PPC

preliminary support for Delphi classes and Mac objects (D) (M) (delphil|bc].pas,
peterb|a-g].pas)

new options ‘--[no] -objects-require-override’, ‘-~ [no] -delphi-method-shadowing’ |]
‘~-[nol-objects-are-references’ (off by default) (D) (M)

12

The GNU Pascal Manual

new options ‘--gnu-objects’ (default), ‘--ooe-objects’, ‘--mac-objects’,
‘-—borland-objects’ which choose object model

‘uses’ can not directly follow ‘import’ (@)
handle ‘+" and ‘-’ as Mac Pascal does (M) (@)

new options ‘--[no]l-nonlocal-exit’ (default in ‘--ucsd-pascal’ and
‘~-mac-pascal’) (fjf988]fijk|.pas, {fjf1062*.pas) (U) (M)

new options ‘--[no]-object-checking’ (on by default) to check on virtual method
calls if VMT pointer is not nil and has matchin ‘Size’ and ‘NegatedSize’ entries, new
options ‘--[no]-range-and-object-checking’ which are now equivalent to ‘$R[+-]’
(fjf1053*.pas) (B)

new options ‘--[no] -pointer-checking’, ‘~-[no] -pointer-checking-user-defined’
new variable ‘ValidatePointerPtr’ (fjf1052*.pas, pcerrorc.pas) (these options are off
by default!)

new options ‘--[nol-implicit-result’ (fjf1022*.pas) (on by default only in
‘~-delphi’ mode!) (D) (@)

new options ‘--{en,dis}able-predefined-identifier’ (fjfl037*.pas)

3

‘import’ within a routine (mod15[c-e].pas)

3 4

the option ‘--no-debug-info’ was renamed to ‘--disable-debug-info’, and
‘~-no-default-paths’ was renamed to ‘--disable-default-paths’ (@)

qualified identifiers (chiefl8.pas, {jf260*.pas, fjf921*.pas, grpl.pas, kurzwl.pas,
mod{9,10,13..17}*.pas) (@)

with ‘-Wnested-comments’ and without ‘--nested-comments’ warn about comment
openers found within comments (fjf1017*.pas)

new options ‘--[no-] case-value-checking’ (fjf1012*.pas)

optimize arithmetic with a complex and a real operand
<20020118143553.B28837@artax.karlin.mff.cuni.cz>

range checking <Pine.LNX.4.21.0012091605570.8168-100000@rusty.russwhit.com>
(chuckb.pas, fjf446.pas, fjf989*.pas, {jf992* pas, fsc{01..37}*.pas, miklosl[bc|.pas,
mir{016,021..028,030..047}*.pas, ole[12]*.pas, russ4*.pas)

‘Exit’ with an argument (non-local exits not yet supported) (fjf988*.pas) (U) (M)
new options ‘--[no-]propagate-units’ (on by default with ‘--mac-pascal’, off in
other dialects) (fjf987*.pas) (M); this also covers the item “unit inheritance”

enable ‘Pointer’ in ‘--mac-pascal’ mode (Mac Pascal has a ‘Pointer’ function which
does the same as a type-cast to ‘Pointer’; though adding ‘Pointer’ as a type allows
more, it’s backward-compatible) (M)

‘%’ and ‘|’ (shortcut ‘and’ and ‘or’) (fjf981*.pas) (M)
‘Leave’ and ‘Cycle’ (equivalent to ‘Break’ and ‘Continue’) (avo3.pas) (M)

optimize ‘Writeln (... string_constant)’ and ‘Write (... string_constant,
string_constant . ..)’

‘BindingType’ is now a packed record as EP demands (fjf975a.pas) (E)
EP structured initializers (fjf964*.pas, {jf967*.pas, {fjf968*.pas) (E)
EP record, array, set values (constdef.pas, {jf966*.pas, {jf971*.pas) (E)

Chapter 2: New Features of GNU Pascal. 13

e ‘gp’: ‘PC’ now sets the compiler for both Pascal and C unless ‘CC’ is set explicitly

e ‘Discard’

e ‘Integer’, ‘Word’, ‘Cardinal’ are now equivalent to ‘PtrInt’, ‘PtrWord’, ‘PtrCard’, no
more (necessarily) to C’s ‘int’ and ‘unsigned int’ (@)

e new types ‘CInteger’, ‘CWord’, ‘CCardinal’

e new make variable ‘GPC_PAGESIZE’ to set the page size when building the manual (PDF,
PostScript, DVI)

e ‘qualified’ and import lists are no more allowed after ‘uses’ (only after ‘import’, as

EP demands) (@)

e the ‘GMP’ unit doesn’t support gmp-2.x anymore (if you used it, just upgrade to a newer
GMP version) (@)

e conflicts between object fields/methods and ancestor type names are detected as re-
quired by OOE (fjf945*.pas) (@) (O)

e repeated function headings (in ‘forward’ declarations and interfaces) are checked
stricter: if one has a result variable, so must the other (according to the OOE draft)

() (0)
e the ‘Pipe’ unit was renamed to ‘Pipes’ because of a name conflict (@)

e cmpty parameter lists can be written as ()’ (chief54*.pas, delphi6*.pas) (D)

e GMP unit: ‘mpf_sin’, ‘mpf_cos’

e the test suite output is now by default stored in DejaGnu compatible files

‘gpc.log’ and ‘gpc.sum’ in the ‘p/test/’ directory; other available test targets are
‘pascal.check-short’ and ‘pascal.check-long’ (@)

e new options ‘~W[no-Jdynamic-arrays’ (fjf931*.pas)
e new argument to ‘_p_initialize’ (@)

e ‘UMask’

e new option ‘--no-debug-source’

e new lexer (no directly user-visible difference, but should allow for better handling of
lexer-based problems in the future)

e ‘CompilerAssert’ (fjf904*.pas)

e options ‘--[no]-assert’ renamed to ‘--[no]-assertions’ (necessary to avoid a con-
flict with GCC) (@)
e new options ‘--[no-]Jrange-checking’, also as short compiler directives

‘{$R+}’/‘{$R-}’ (default is on) (C, E, B, @)

e new options ‘--[no-Imethods-always-virtual’ (fjf903*.pas) (M)

e new options ‘--[no-]pointer-arithmetic’, ‘--[no-]cstrings-as-strings’,
‘~W[no-Jabsolute’ (all of which ‘--[no-]extended-syntax’ implies)

e ‘Integer2StringBase’, ‘Integer2StringBaseExt’

e new constants ‘NumericBaseDigits’, ‘NumericBaseDigitsUpper’

e allow assigning, passing by value and returning objects, with assignments of an ob-
ject of derived type to one of a base type (chief35[ab].pas, fjf451*.pas, fjf696[ef].pas,
fjf884*.pas), BP compatible except for a bug in the BP feature itself (see the comment
in ‘p/test/fjf451h.pas’) (B)

14

The GNU Pascal Manual

new options ‘-W[no-Jobject-assignment’

¢

warn (except in ‘--borland-pascal’) if a virtual method overrides a non-virtual one

(chief52*.pas)

warn when an non-abstract object type has virtual methods, but no constructor
(chief51*.pas)

‘-—maximum-field-alignment’ does not apply to ‘packed’ records

‘ArcSin’, ‘ArcCos’

trimming string relations as functions (‘EQPad’ etc.) (fjf873.pas)

new options ‘-W[no-J]interface-file-name’

‘SeekEQF’ and ‘SeekEOLn’ use ‘Input’ implicitly when no file is given (fjf871.pas) (B)

tagging feature for ‘with’ statements (tom6.pas) <200012022215.eB2MFD614424@wsinpal6.win.tue.nl>

(Sun Pascal)
new option ‘--sun-pascal’

field names and array indices in initalizers are recognized (waldek5*.pas) (options
‘~W[no-]field-name-problem’ removed, @)

object directives ‘published’, ‘public’ (both equivalent), ‘protected’ (scope limited to
object type and derived object types), ‘private’ (scope limited to current unit/module)
(fjf864*.pas) (options ‘-W[no-Jobject-directives’ removed, Q)

(o

the operator precedence and associativity of ‘+’ an is now as defined in EP by
default (and as in BP with ‘--borland-pascal’) <Pine.LNX.4.44.0210251249500.6181-
100000@duch.mimuw.edu.pl> (fjf863*.pas) (@)

‘Integer (16)’ etc. changed to ‘Integer attribute (Size = 16)’ (works for integer
and Boolean types) (fjf861.pas) (@)

types can have attributes (note: no preceding *;’) (fjf860*.pas)

dynamic object methods (£jf859.pas) (B)

in ‘--borland-pascal’ mode, ‘Assign’ unconditionally (re-)initializes its file parameter
(fj£858.pas) (B)

GPC doesn’t use ‘gpm’ files anymore (instead, each module has an implicit
‘modulename-all.gpi’ interface which is a regular ‘gpi’ file)

make the program/module/unit finalizers non-public (‘static’ in C sense), omit them
if easily possible

new options ‘-W[no-]parentheses’ ({j{848*.pas)
non-‘interface’ modules with empty implementation part (pmodl.pas, fjf843.pas)

‘maximum-field-alignment’ and ‘[no-]field-widths’ work as local compiler direc-
tives now (fjf842.pas)

dropped ‘{$debug-statement}’ (should not be necessary anymore, now that debug
info mostly works)

new options ‘--[no-]longjmp-all-nonlocal-labels’
object methods can have attributes (fjf826*.pas)
new attributes ‘iocritical’ (fjf824*.pas), ‘ignorable’ (fjf839*.pas) for routines

dropped computed ‘goto’ (never worked for nonlocal ‘goto’ into the main program,
implementing it would be quite difficult, probably not worth it) (@)

Chapter 2: New Features of GNU Pascal. 15

e new type ‘AnyFile’ for parameters and pointer targets (fjf821*.pas)
e ‘TimeStamp’ is now a packed record as EP demands (fjf975b.pas) (E)
e Mac Pascal specific features are supported according to the dialect options (M)

¢

e ‘—-interface-only’ does not require ‘=S’ or ‘-c’ anymore (and does not create an

object file)

e ‘initialization’, ‘finalization’ (D)

e ‘TimeZone’ in ‘TimeStamp’ counts seconds east of UTC now (not west, as before) (date-
timedemo.pas) (@)

e ‘export Foo = all (...)’ (fjf811*.pas)

e new options ‘-W[no-Jlocal-external’ (implied by ‘-Wall’)

e type-casts are BP compatible now, in particular, value type-casts between ordinal and
real or complex types don’t work anymore (B) (@)

e all non-ISO-7185 keywords can be used as identifiers (with two small exceptions)
(fjf440.pas)

e ‘pack-struct’ does not imply bit-level packing anymore (only explicit ‘packed’ records
and arrays do) (@)

e new options ‘--[no-]ignore-packed’ (‘--ignore-packed’ is the default in BP mode)
(fj£796*.pas) (B) (@)

e new option ‘--maximum-field-alignment=N’

e new options ‘{$[no-]pack-struct}’ as a compiler directive

e ‘attribute’ for routines doesn’t imply ‘forward’ anymore (so you don’t have to declare
routines twice in a program or implementation part when setting the linker name or
some other attribute) (@)

e ‘static’, ‘volatile’ and ‘register’ for variables and ‘inline’ for routines are no
prefix-directives anymore, but ‘attribute’s (@)

e combining several dialect options (such as ‘--extended-pascal --borland-pascal’)

doesn’t work anymore (what should this mean, anyway? Combine the features, but

e ‘external’ without ‘name’ defaults to all-lowercase now (@)

e ‘c’, ‘c_language’ and ‘asmname’ are deprecated (@)

e ‘external name ’foo’’ (fjf780.pas), ‘external ’libname’ name ’foo’’ (where
‘libname’ is ignored) (B)

e Mac Pascal directives ‘definec’, ‘macro’, ‘undefc’, ‘ifc’, ‘ifoptc’, ‘elsec’, ‘elifc’,
‘endc’, ‘errorc’ (treated as equivalent to the corresponding existing ones) (M)

e units without ‘implementation’ part (M)

e new options ‘--vax-pascal’, ‘~-mac-pascal’

e attributes ‘const’ for variables and ‘name’ for variables, routines and modules; assem-
bler names and module /unit file names can now be expressions (which must yield string
constants) (fjf781*.pas, fjf809*.pas)

e the utilities ‘gpidump’ and ‘binobj’ are installed with GPC (B)

e new options ‘-W[no-]identifier-case’, ‘-W[no-]identifier-case-local’

(fjf751*.pas)

16

The GNU Pascal Manual

new compiler directive ‘$R foo’, equivalent to ‘$L foo.resource’ (B)

dropped ‘--[no-]borland-char-constants’ (now simply coupled to dialect options)
(@)

test suite: support progress messages (‘TEST_RUN_FLAGS=-p’ from the Makefile; ‘-p’ in
testgpc); see http://fjf.gnu.de/misc/progress-messages.tar.gz

‘=" and ‘<>’ comparisons of structures (arrays, records, ...) except strings and sets are
forbidden now (@) (E)

irrelevant operands and arguments (e.g.: ‘foo in [17; ‘bar * [1’; ‘Im (baz)’ if ‘baz’ is
of real type) are not necessarily evaluated anymore (which is allowed by the standard);
instead, a warning is given if they have side-effects (@)

accept only one program, unit, module interface or implementation or a module
interface and the implementation of the same module in one file; new options
‘~-[no-lignore-garbage-after—-dot’ ({jf735%.pas) (@)

new options ‘-W[no-Jimplicit-io’ (fjf734*.pas)

new options ‘--enable-keyword’, ‘--disable-keyword’ (fjf733*.pas)

‘CBoolean’ (fjf727.pas)

dropped the usage of ‘GetMem’ as a function with one parameter (only the BP compat-
ible usage as a procedure with two parameters remains) (@)

accessing the variable ‘FileMode’ now requires using the ‘GPC’ (or, for BP compatibility,
the ‘System’) unit (@)

‘DupHandle’

dropped the predefined dialect symbols ‘__CLASSIC_PASCAL__’,
‘__STANDARD_PASCAL__’, ‘__EXTENDED_PASCAL__’, ‘__OBJECT_PASCAL__’,
‘__UCSD_PASCAL__’, ‘__BORLAND_PASCAL__’, ‘__DELPHI__’, ‘__PASCAL_SC__’ and

- -

‘__GNU_PASCAL__’ (one can use ‘{$ifopt borland-pascall}’ etc. instead) (@)
‘Succ’, ‘Pred’, ‘Inc’, ‘Dec’ for real numbers (fjf714*.pas)

use environment variables ‘GPC_UNIT_PATH’, ‘GPC_OBJECT_PATH’

new options ‘-W[no-]float-equal’

new option ‘--ucsd-pascal’

dropped the syntax ‘type foo = procedure (Integer, Real)’ (i.e., without parameter
names) (@)

CRT: new argument ‘On’ to ‘CRTSavePreviousScreen’
‘SetUserID’, ‘SetGroupID’

‘HeapChecking’

new built-in procedure ‘Assert’; new options ‘--[no]-assert’ (also ‘{$C+}’, ‘{$C-}’
for Delphi compatibility) (fjf665*.pas) (D)

‘ProcessGroup’

StringUtils: ‘QuoteEnum’

‘CurrentRoutineName’ (fjf752.pas)

TFDD: new unit

gpc-run: new options ‘~e FILE’ and ‘-E FILE’ (redirect/append standard error)

http://fjf.gnu.de/misc/progress-messages.tar.gz

Chapter 2: New Features of GNU Pascal.

Have fun,
The GNU Pascal Development Team

17

18

The GNU Pascal Manual

Chapter 3: The GNU Pascal Frequently Asked Questions List. 19

3 The GNU Pascal Frequently Asked Questions
List.

This is the Frequently Asked Questions List (FAQ) for GNU Pascal. If the FAQ and
the documentation do not help you, you have detected a bug in it which should be re-
ported, Section 10.1 [Mailing List], page 505. Please really do it, so we can improve the
documentation.

3.1 GNU Pascal

3.1.1 What and why?

The purpose of the GNU Pascal project is to produce a Pascal compiler (called GNU
Pascal or GPC) which

e combines the clarity of Pascal with powerful tools suitable for real-life programming,

e supports both the Pascal standard and the Extended Pascal standard as defined by ISO,
ANSI and IEEE (ISO 7185:1990, ISO/IEC 10206:1991, ANSI/IEEE 770X3.160-1989),

e supports other Pascal standards (UCSD Pascal, Borland Pascal, parts of Borland Del-
phi, Mac Pascal and Pascal-SC) in so far as this serves the goal of clarity and usability,

e may be distributed under GNU license conditions, and

e can generate code for and run on any computer for which the GNU C compiler can
generate code and run on.

Pascal was originally designed for teaching. GNU Pascal provides a smooth way to
proceed to challenging programming tasks without learning a completely different language.

The current release implements Standard Pascal (ISO 7185, levels 0 and 1), most of
Extended Pascal (ISO 10206, aiming for full compliance), is highly compatible to Borland
Pascal (version 7.0), has some features for compatibility to other compilers (such as VAX
Pascal, Sun Pascal, Mac Pascal, Borland Delphi and Pascal-SC).

It provides a lot of useful GNU extensions not found in other Pascal compilers, e.g. to
ease the interfacing with C and other languages in a portable way, and to work with files,
directories, dates and more, mostly independent of the underlying operating system.

Included units provide support for regular expressions, arithmetic with integer, rational
and real numbers of unlimited size, internationalization, inter-process communication, mes-
sage digests and more. Demo programs show the usage of these units and of many compiler
features.

3.1.2 What is the current version?

The current version is 20070904.

Releases are available as a source archive and precompiled binaries for several common
platforms from the GPC web site, http://www.gnu-pascal.de.

For details about new features, see the section ‘News’ on the web site. On bugs fixed
recently, see the ‘Done’ section of the To-Do list (on the same web site).

http://www.gnu-pascal.de

20 The GNU Pascal Manual

GPC uses GCC as a back-end. It supports GCC version 2.8.1, 2.95.x, 3.2.x, 3.3.x or
3.4.x. (The newest supported GCC version is usually preferable, unless it contains serious
bugs in itself.)

There are no fixed time frames for new releases. Releases are made when enough inter-
esting changes have been made and the compiler is somewhat stable.

3.1.3 Is it compatible with Turbo Pascal (R)?

GPC is not a drop-in replacement for Borland’s Turbo Pascal (R). Almost all BP lan-
guage features are supported. Notable exceptions are the string format (as discussed below),
or the ‘Mem’ and ‘Port’ pseudo arrays, though replacement functions for the latter on [A32
platforms exist in the ‘Ports’ unit.

Almost all of BP’s run time library is supported in GPC, either by built-in compiler
features or in units with the same names as their BP counterparts.
For details about the compatibility, the few remaining incompatibilities and some useful

alternatives to BP features, see the ‘Borland Pascal’ chapter in the GPC Manual. (see
Chapter 7 [Borland Pascal], page 261)

3.1.4 Which platforms are supported by GNU Pascal?

GPC uses the GCC backend, so it should run on any system that is supported by GNU
CC. This includes a large variety of Unix systems, MS-DOS, OS/2 and Win32. A full list
of platforms supported by GCC can be found in the file ‘INSTALL’ of the GCC distribution.
Not all of these have actually been tested, but it is known to run on these platforms:

ix86-gnu (GNU Hurd)
ix86-linux (Linux 2.x, ELF)
Linux/AMD64

1486-linuxaout
1486-linuxoldld
1386-freebsd1.2.0

AIX 4.2.1

AIX 4.3

DJGPP V2 (Dos)

EMX 0.9B (0S/2, Dos)

Cygwin32 beta20 and higher (MS-Windows95/98, MS-Windows NT)
mingw32 (MS-Windows95/98, MS-Windows NT)
MSYS (MS-Windows)

Mac OS/X 10.3
mips-sgi-irix5.3
mips-sgi-irix6.5
sun-sparc-sunos4.1.4
sparc-sun-solaris2.x
sun-sparc-solaris 2.5.1
sun-sparc-solaris 2.6
sun-sparc-solaris 7
sun-sparc-solaris 8

Chapter 3: The GNU Pascal Frequently Asked Questions List. 21

alpha-unknown-linux
alpha-dec-o0sf4.0b
$390-ibm-linux-gnu

OK people — send us your success stories, with canonical machine name!

3.2 Installing GPC

You find the most up-to-date installation instructions in the GPC Manual or the file
‘INSTALL’ in source distributions, or on the GPC web site. (see Chapter 4 [Installation],
page 33)

The following sections describe things you might need or want to install besides GPC
itself.

3.2.1 What to read next

After installing GPC, please check the files in the directory ‘/usr/local/doc/gpc’:

‘README’ General Information about GPC

‘FAQ’ This FAQ :—)

‘NEWS’ Changes since the last release

‘BUGS’ How to report bugs, about the Test Suite
‘AUTHORS’ List of GPC authors

‘COPYING’ The GNU General Public License
‘COPYING.LIB’ The GNU Lesser General Public License

3.2.2 Which components do I need to compile Pascal code?

A complete Pascal compiler system should at least have:
The actual compiler, GPC.
An editor, assembler, linker, librarian and friends.

A C library. If you have a working C compiler, you already have this.

Ll e

A debugger, if you want to debug your programs.

For most people, the GNU binutils and GNU debugger (‘gdb’) are a good choice, although
some may prefer to use vendor specific tools.

3.2.3 How do I debug my Pascal programs?

To debug your programs, (a) GNU Pascal must be able to generate executables with
debug info for your platform, and (b) you must have a debugger which understands this.
o If ‘gpc —g -0 hello hello.p’ says:
gpc: —-g not supported for this platform

then GPC is unable to generate debugging info. Usually, installing ‘gas’ (part of GNU
binutils) instead of your system’s assembler can overcome this. When you configure the
GCC used for GPC, specify ‘--with-gnu-as’, and possibly ‘--with-gnu-1d’ and/or
‘-—with-stabs’. More information can be found in the ‘INSTALL’ file in the GNU CC
source directory.

22 The GNU Pascal Manual

e Your system’s debugger may not understand the debug info generated by GNU tools.
In this case, installing ‘gdb’ may help.

The bottom line: if you can debug GCC compiled programs, you should be able to do
this with GPC too.

The GNU debugger (‘gdb’) currently does not have a “Pascal” mode, so it is unable to
display certain Pascal structures etc. When debugging, please note that the Initial Letter In
Each Identifier Is In Upper Case And The Rest Are In Lower Case. If you want to display
variable ‘foo’ in the debugger, type ‘show Foo’ or ‘display Foo’ instead.

Although ‘gdb’ is an excellent debugger, it’s user interface is not everybody’s preference.
If you like to debug under X11, please refer to the comp.windows.x FAQ: “Where can I get
an X-based debugger?” at:
http://www.fags.org/faqs/x-faq/part6/section-2.html

Some useful frontends include: XXGDB, tGDB and XWPE. See:
http://wwuw.ee.ryerson.ca:8080/ elf/xapps/Q-IV.html

Very nice, but resource consuming is the Motif based DDD:
http://sol.ibr.cs.tu-bs.de/softech/ddd/

Furthermore, RHIDE (see Section 3.2.6 [IDE|, page 23) contains built-in debugging
suport, similar to the IDE of BP.

3.2.4 What additional libraries should I have?

You will need certain additional libraries when you compile some of the units. These
can be found in the directory http://www.gnu-pascal.de/libs/.

Currently, there are the following libraries:

gmp Arithmetic for integers, rationals and real numbers with arbitrary size and
precision. Used by the GMP unit.

rx Regular expression matching and substitution. Used by the RegEx unit.

ncurses
PDCurses Screen handling. Used by the CRT unit. Depending on your system, you have
the following choices:

Unix: You can compile terminal applications with ncurses and applications
that run in an X11 window with PDCurses (though terminal applications can,
of course, also run in an xterm under X11). ncurses is used by default. If you
want to use PDCurses (a.k.a. XCurses), give the option ‘-DX11’ when compiling
CRT.

Dos with DJGPP and MS-Windows with mingw: Only PDCurses is available
and will be used by default.

MS-Windows with Cygwin: PDCurses and ncurses are available. PDCurses is
used by default. If you want to use ncurses, give the option ‘~DUSE_NCURSES’
when compiling CRT.

Other systems: Please see the ‘README’s and installation instructions of PD-
Curses and ncurses to find out which one(s) can be built on your system. See
the conditionals at the end of crt.inc and crtc.h (and change them if necessary)
on which library is used by default.

http://www.faqs.org/faqs/x-faq/part6/section-2.html
http://www.ee.ryerson.ca:8080/~elf/xapps/Q-IV.html
http://sol.ibr.cs.tu-bs.de/softech/ddd/
http://www.gnu-pascal.de/libs/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 23

intl Internationalization. Used by the Intl unit. On some systems, it is part of the
system library (libc).

ElectricFence
This library is not used by any GPC unit. It is a debugging tool to assist you in
finding memory allocation bugs. To use it, just link it to your program, either
on the command line (‘-lefence’) or in the source code (‘{$L efence}’) which
you might want to put into an ‘{$ifdef DEBUG} or similar since using libefence
is only recommended for debugging.

The source code of the libraries is available in the main ‘1ibs’ directory. Most libraries
come with one or several patches which should be applied before compiling them.

Binaries for some platforms are available in the ‘binary/platform’ subdirectories. If you
compile the libraries for other platforms, be invited to make the binaries available to us for
distribution on the web site.

There are also the following files:

‘terminfo-linux.tar.gz’

This is a patch to enable ncurses programs to make use of the ability of Linux 2.2
and newer kernels to produce a block cursor when needed. The present patch
can be installed without recompiling anything, just by copying some files into
place. More details can be found in the ‘README’ file included in this archive.
The patch will not do any harm on older kernels. Please note that not only on
Linux machines it is useful to install the patch. Installing them on any other
machine will allow users who telnet in from a Linux console to profit from the
block cursor capability. Besides, some Unix systems have installed older Linux
terminfo entries or none at all, so it’s a good thing, anyway, to give them a
current version. The patch is included in the terminfo database of ncurses 5.0,
so if you install ncurses 5.0 (source or binary), you don’t need to get the patch
separately. But you can install it on a system with an older ncurses version if
you don’t feel like upgrading ncurses altogether.

‘tsort-2.9i.zip’
A little utility (extracted from util-linux-2.9i, but not Linux specific), needed for
the configuration of the rx library. You need it only if you compile rx yourself
(and if it’s not already present on your system), not when using a rx binary.

3.2.5 Contributed units
Several people have contributed units for GPC. They are usually announced on

the mailing list, Section 10.1 [Mailing List|, page 505. Most of them can be found in
http://www.gnu-pascal.de/contrib/.

3.2.6 Can you recommend an IDE?

Users of Borland Pascal may wonder if there’s a replacement for the IDE (Integrated
Development Environment). Here'’s a few suggestions:

http://www.gnu-pascal.de/contrib/

24 The GNU Pascal Manual

e (X)Emacs. Some people think it’s the answer to the question of Life, the Universe and
Everything, others decide it’s uGNUsable. Awvailable from your friendly GNU mirror
and most distributions.

e PENG. It’s not free software, but it was written with GPC. It’s very similar to Bor-
land’s IDE, but with many extensions. Binaries for DJGPP, Linux and Solaris can be
downloaded from http://fjf.gnu.de/peng/.

e RHIDE. DJGPP users might want to try RHIDE. The latest (beta) release is compat-
ible with GNU Pascal and allows stepping, tracing and watching like Borland’s IDE.
It can be downloaded from http://www.rhide. com.

e DevPascal. DevPascal is a Free Software IDE for mingw32. It can
be downloaded from http://wuw.gnu-pascal.de/contrib/chief/ or
http://www.bloodshed.net/devpascal.html

e XWPE is another imitation of the Borland IDE, so users of Borland Pascal may find
it a good alternative.

3.3 GNU Pascal on the DJGPP (MS-DOS) platform

This chapter discusses some potential problems with GNU Pascal on MS-DOS, using
DJGPP.

3.3.1 What is DJGPP?

The following paragraph is from the site http://www.delorie.com/djgpp/:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher)
PCs running DOS. It includes ports of many GNU development utilities. The development
tools require a 80386 or newer computer to run, as do the programs they produce. In most
cases, the programs it produces can be sold commercially without license or royalties.

3.3.2 If you need more information

GPC/DJGPP is a DJGPP V2 application, and most of the DJGPP documentation
applies for GPC too. A great source of information is the DJGPP FAQ:
http://www.delorie.com/djgpp/v2faq/230b.zip

Another place to look for DJGPP documentation is the DJGPP Knowledge Base, at
this URL: http://www.delorie.com/djgpp/doc/kb/

3.3.3 What do I download?

As discussed in Section 3.2.2 [Components|, page 21, other than GPC itself, you
need an assembler, linker and friends, a C library and possibly a debugger. The site
http://www.delorie.com/djgpp/ recommended the following files and they will help you
find a mirror:
‘v2/djdev203.zip’
‘v2gnu/bnu2951b.zip’
‘v2gnu/gcc2952b.zip’
‘v2gnu/gdb418b.zip’

C library)
assembler, .. .)
gee)

(
(
(
(debugger)

http://fjf.gnu.de/peng/
http://www.rhide.com
http://www.gnu-pascal.de/contrib/chief/
http://www.bloodshed.net/devpascal.html
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/230b.zip
http://www.delorie.com/djgpp/doc/kb/
http://www.delorie.com/djgpp/

Chapter 3: The GNU Pascal Frequently Asked Questions List. 25

‘v2gnu/mak379b.zip’ (make)
‘v2gnu/txi40b.zip’ (texi)

This list is about 10 MB not counting GPC. You can use a binary version of GPC from
the web site.

3.3.4 How do I install the compiler?

If you don’t have DJGPP installed on your harddisk, create a directory for GNU Pascal
(‘c:\gpc’), and unzip the archives. Make sure you preserve the directory structure (use
‘pkunzip -d’). Now, add the directory where ‘gpc.exe’ lives (‘c:\gpc\bin’) to your path
and set the DJGPP environment variable to point to your ‘djgpp.env’ file:

set DJGPP=c:\gpc\djgpp.env
Then, add this to your ‘djgpp.env’ file:

lgpcppl]
C_INCLUDE_PATH=Y/>;C_INCLUDE_PATHY%%DJDIR%/lang/pascal; %DJDIR%/include

[gpc]
COMPILER_PATH=Y,/>;COMPILER_PATH’%DJDIRY/bin

LIBRARY_PATH=Y,/>;LIBRARY_PATHY%DJDIR’/1ib;%DJDIRY%/contrib/grx20/1ib
The GPC online documentation is in GNU info format; you need the Info reader
(‘txi390b.zip’) to read it, or use the built-in Info reader of the RHIDE or PENG IDE.
To add the GPC documentation to the info directory file, edit the ‘c:\gpc\info\dir’ file,
and locate this section:
* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

* GCC: (gcc.inf).
The GNU C, C++, and Objective-C Compiler

* GPC: (gpc.inf).
The GNU Pascal Compiler

* GDB: (gdb.inf).
The GNU Debugger (gdb and gdb-dpmi) .

Specific information for low-memory conditions and more can be found in the DJGPP
FAQ and documentation.

26 The GNU Pascal Manual

3.3.5 I cannot read the Info documentation!

To read the Info documentation, you need the ‘info’ program from ‘txi390b.zip’ or
an IDE like RHIDE or PENG.

3.3.6 GPC says: no DPMI

You don’t have a DPMI server installed, and DJGPP v2 requires it to run. You can either
use one of the commercial DPMI servers (e.g., run ‘gpc’ in a DOS box under MS-Windows)
or download and install CWSDPMI (‘csdpmi3b.zip’) which is a free DPMI server written
for DJGPP.

3.3.7 I have troubles with assembly code

The GNU Assembler (‘as.exe’), or ‘gas’, called by GCC accepts “AT&T” syntax which
is different from “Intel” syntax. Differences are discussed in section 17.1 of the DJGPP
FAQ.

A guide is available which was written by Brennan Mr. Wacko Underwood
brennan@mack.rt66.com and describes how to use inline assembly programming with
DJGPP, at this URL: http://www.delorie.com/djgpp/doc/brennan/brennan_att_
inline_djgpp.html

There’s also a GPC assembler tutorial at
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Section 17.3 of the DJGPP FAQ discusses some methods to convert “Intel” syntax to
“AT&T” syntax.

However, please note that assembler code is unportable, i.e. it will work on TA32 (“x86")
and compatible processors if written for them, but will not even compile for other processors.
So by writing assembler code in your programs, you will limit their usefulness substantially.

If you think you “need” assembler code for speed — and you’ve checked that your as-
sembler code actually runs faster than Pascal code compiled with suitable optimizations —
you might want to put both Pascal and assembler versions of the critical sections in your
program, and let, e.g., an ‘{$ifdef 1386} decide which one to use. This way, your program
will at least compile on all processors.

3.3.8 Tell me how to do DPMI, BIOS and other DOS related
things.

DPMI, BIOS and other functions are no different than other system functions. Refer to
the GPC Manual on how to access your system’s C-library. This small example shows how
to use DPMI, copying some structures and function prototypes of ‘<dpmi.h>":

program DPMIDemo;
{ Only for DJGPP }
{$x+}

{ ‘Byte’ is ‘unsigned char’ in C,

mailto:brennan@mack.rt66.com
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.delorie.com/djgpp/doc/brennan/brennan_att_inline_djgpp.html
http://www.gnu-pascal.de/contrib/misc/gpcasm.zip

Chapter 3: The GNU Pascal Frequently Asked Questions List. 27

‘ShortCard’ is ‘unsigned short’ in C,
‘MedCard’ is ‘unsigned long’ in C,
‘Word’ is ‘unsigned’ in C,

etc. (all these types are built-in). }

type
TDpmiVersionRet = record
Major : Byte;
Minor : Byte;
Flags : ShortCard;
CPU : Byte;

Master_PIC: Byte;
Slave_PIC : Byte;
end;

type

TDpmiFreeMemInfo = record
LargestAvailableFreeBlockInBytes,
MaximumUnlockedPageAllocationInPages,
MaximumLockedPageAllocationInPages,
LinearAddressSpaceSizeInPages,
TotalNumberOfUnlockedPages,
TotalNumberOfFreePages,
TotalNumberOfPhysicalPages,
FreelinearAddressSpaceInPages,
SizeOfPagingFilePartitionInPages,
Reservedi,
Reserved?2,
Reserved3: MedCard;

end;

function DpmiGetVersion (var Version: TDpmiVersionRet): Integer;
external name ’__dpmi_get_version’;

function DpmiGetFreeMemoryInformation
(var MemInfo: TDpmiFreeMemInfo): Integer;
external name ’__dpmi_get_free_memory_information’;

var
Version: TDpmiVersionRet;
MemInfo: TDpmiFreeMemInfo;

begin
if DpmiGetVersion (Version) = O then
begin
WriteLn (’CPU type: > Version.CPU, ’867);
Writeln (’DPMI major: >, Version.Major);
WriteLn (’DPMI minor: >, Version.Minor);

end

28 The GNU Pascal Manual

else
Writeln (’Error in DpmiGetVersion’);

if DpmiGetFreeMemoryInformation (MemInfo) = O then
Writeln (’Free DPMI memory: ’,

MemInfo.TotalNumberOfFreePages, ’ pages.’)

else

Writeln (’Error in DpmiGetMemoryInformation’);
end.

3.3.9 I got an exception when accessing an ‘array [1 .. 4000000]
of Byte’.

Per default, the maximum stack size of a DJGPP application is 256K. If you need more,
you have to adjust it with the stubedit program, i.e.:

stubedit your_app.exe minstack=5000K

Another way is to add the following code to your program to define a minimum stack
size (here: 2 MB). This value will be honored even if a user sets a lower value by using
stubedit, so this method might be a little safer. (The linker name ‘_stklen’ is essential;
the Pascal identifier doesn’t matter. The constant doesn’t have to be used anywhere in the
program. It is recommended to put this declaration in the main program file, not in any
unit/module, so programs using a unit/module can set whatever limit they need.)

{$ifdef __G0O32__%}
const

MinStackSize: Cardinal = $200000; attribute (name = ’_stklen’);
{$endif}

Still, it might be a good idea to use pointers for large structures, and allocate the memory
at runtime.

DJGPP has to allocate the stack in physical memory at program startup, so one might
have to be careful with too large stack limits. Most other systems allocate stack pages on
demand, so the only reason to set a limit at all might be to prevent a runaway recursion
from eating up all memory ...

On Unix-like systems, you can set a resource limit, but you usually don’t do it in
normal programs, but rather in the shell settings (bash: ‘ulimit’; csh: ‘limit’; syscall:
‘setrlimit’(2)).

3.4 Strings

3.4.1 What’s this confusion about strings?

Turbo Pascal strings have a length byte in front. Since a byte has the range 0 .. 255, this
limits a string to 255 characters. However, the Pascal string schema, as defined in section
6.4.3.3.3 of the ISO 10206 Extended Pascal standard, is a schema record:

type
String (Capacity: Integer) = record
Length: 0 .. Capacity;
String: packed array [1 .. Capacity + 1] of Char

Chapter 3: The GNU Pascal Frequently Asked Questions List. 29

end;

The ‘+ 1”7 is a GPC extension to make it feasible to automatically add the ‘#0’ terminator
when passing or assigning them to CStrings. Thus at the expense of a little added complexity
(must declare capacity, don’t use ‘GetMem’ without explicit initialization of the ‘Capacity’
field, and the additional space requirement) you can now have very long strings.

3.4.2 Overlaying strings in variant records

Q: Should the different variants in a variant record overlay in the same memory? Previous
Pascals I have used have guaranteed this, and I've got low-level code that relies on this.
The variants are not the same length, and they are intended not to be.

A: No, this is intentional so that the discriminants are not overwritten, and they can be
properly initialized in the first place. Consider:
record
case Boolean of
False: (sl: String (42));
True: (s2: String (99));
end;

If the strings would overlay, in particular their discriminants would occupy the same
place in memory. How should it be initialized? Either way, it would be wrong for at least
one of the variants . . .

So, after a discussion in the [SO Pascal newsgroup where this topic came up concerning
file variables (which also require some automatic initialization and finalization), we decided
to do this in GPC for all types with automatic initialization and finalization (currently files,
objects and schemata, including strings, in the future this might also be Delphi compat-
ible classes and user-defined initialized and finalized types), since the standard does not
guarantee variants to overlay, anyway . . .

There are two ways in GPC to get guaranteed overlaying (both non-standard, of course,
since the standard does not assume anything about internal representations; both BP com-
patible), ‘absolute’ declarations and variable type casts. E.g., in order to overlay a byte
array ‘b’ to a variable ‘v’:

var
b: array [1 .. Size0f (v)] of Byte absolute v;

Or you can use type-casting:

type
t = array [1 .. SizeOf (v)] of Byte;

then ‘t (v)’ can be used as a byte array overlayed to ‘v’.

3.4.3 Why does ‘s[0]’ not contain the length?

Q: In standard Pascal you expect ‘s[1]’ to align with the first character position of ‘s’
and thus one character to the left is the length of ‘s’. Thus ‘s[0]’ is the length of ‘s’. True?
A: This holds for UCSD/BP strings (which GPC does not yet implement, but that’s

planned). The only strings Standard Pascal knows are arrays of char without any length
field.

news:comp.lang.pascal.ansi-iso

30 The GNU Pascal Manual

GPC also supports Extended Pascal string schemata (see Section 3.4.1 [String schemal,
page 28), but they also don’t have a length byte at “position 0”7, but rather a ‘Length’ field
(which is larger than one byte).

3.4.4 Watch out when using strings as parameters

Q: Any “gotchas” with string parameters?

A: Be careful when passing string literals as parameters to routines accepting the string
as a value parameter and that internally modify the value of the parameter. Inside the
routine, the value parameter gets a fixed capacity — the length of the string literal that was
passed to it. Any attempt to assign a longer value will not work.

This only applies if the value parameter is declared as ‘String’. If it is declared as a
string with a given capacity (e.g., ‘String (255)’), it gets this capacity within the routine.

3.4.5 Support for BP compatible short strings

Q: Two different kinds of strings with the same name — ‘String’ — does make a bit of
confusion. Perhaps the oldstyle strings could be renamed ‘short string’ ?

A: When we implement the short strings, we’ll have to do such a distinction. Our current
planning goes like this:

‘String (n)’: string schema (EP compatible)
‘String [n]’: short string (UCSD/BP compatible, where n must be <= 255)

‘String’: dependent on flags, by default undiscriminated schema, but in BP mode (or
with a special switch) short string of capacity 255 (UCSD/BP compatible).

Q: So when will these short strings be available?

A: It’s been planned for some years. The delay has been caused by more pressing
problems.

3.4.6 What about C strings?

A C string (‘char *’) is an array of char, terminated with a ‘#0’ char.

C library functions require C, not Pascal style string arguments. However, Pascal style
strings are automatically converted to C style strings when passed to a routine that expects
C style strings. This works only if the routine reads from the string, not if it modifies it.

E.g., this is how you could access the ‘system()’ call in your C library (which is not
necessary anymore, since ‘Execute’ is already built-in):

program SysCall;
function System (CmdLine: CString): Integer; external name ’system’;

var
Result: Integer;

begin
Result := System (’1ls -1’);
Writeln (’system() call returned: ’, Result)

Chapter 3: The GNU Pascal Frequently Asked Questions List. 31

end.

You could use the type ‘PChar’ instead of ‘CString’. Both ‘CString’ and ‘PChar’ are
predefined as ‘"Char’ — though we recommend ‘CString’ because it makes it clearer that
we’re talking about some kind of string rather than a single character.

A lot of library routines in Pascal for many applications exist in the GPC unit and
some other units. Where available, they should be preferred (e.g. ‘Execute’ rather than
‘system()’, and then you won’t have to worry about ‘CString’s.)

Do not pass a C style string as a ‘const’ or ‘var’ argument if the C prototype says
‘const char *’ or you will probably get a segfault.

3.5 Getting Help

Please read the GPC Manual (info files or other formats) as well as the ‘README’ and
‘BUGS’ files that come with GPC (usually installed in directory ‘/usr/local/doc/gpc’),
plus other docs that might help (the DJGPP FAQ if you use DJGPP, etc.) before you send
email to the maintainers or mailing list.

In particular, the ‘BUGS’ file contains information on how to submit bug reports in the
most efficient way.

The ‘Support’ chapter of the GPC Manual tells you where to find more information
about GPC and how to contact the GPC developers. (see Chapter 10 [Support|, page 505)

3.6 Miscellaneous

3.6.1 I want to contribute; where do I start?

If you want to contribute, please write to the mailing list, Section 10.1 [Mailing List],
page 505.

3.6.2 Where is the GNU Pascal web site?

The GPC homepage on the web, for information and downloads, is
http://www.gnu-pascal.de.

The GPC To-Do list, listing the latest features and fixed bugs can also be found there.

3.6.3 About this FAQ

Current Maintainer: Russ Whitaker, russ@ashlandhome.net

This is the second incarnation of the GNU Pascal FAQ list, based on the previous FAQ
by J.J. van der Heijden. Comments about, suggestions for, or corrections to this FAQ list
are welcome.

Please make sure to include in your mail the version number of the document to which
your comments apply (you can find the version at the beginning of this FAQ list).

Many people have contributed to this FAQ, only some of them are acknowledged above.
Much of the info in, and inspiration for this FAQ list was taken from the GPC mailing list
traffic, so you may have (unbeknownst to you) contributed to this list.

http://www.gnu-pascal.de
mailto:russ@ashlandhome.net

32

The GNU Pascal Manual

Chapter 4: How to download, compile and install GNU Pascal. 33

4 How to download, compile and install GNU
Pascal.

This chapter covers:
e Downloading GPC sources or binaries
e Installation instructions for a GPC binary distribution
e Compilation of the source distribution on a Unix system
e Compilation notes for specific platforms
e Building and installing a cross-compiler

e Crossbuilding a compiler

4.1 Where and what to download

You can download the source code of the current GNU Pascal release from
http://www.gnu-pascal.de/current/
and binaries for some platforms from
http://www.gnu-pascal.de/binary/
The binary archive files are named ‘gpc-version.platform.extension’ - for
example ‘gpc-2.1.alpha-unknown-linux-gnu.tar.gz’ for GPC version 2.1
on an Alpha workstation running the Linux kernel with GNU C Library, or

‘gpc—20000616.1386-pc-msdosdjgpp’ for GPC version 20000616 on an Intel TA32
compatible PC running DOS with DJGPP.

After you have downloaded the correct archive file for your platform, please read the
installation notes on how to install such a binary distribution.

If you are running Dos or MS Windows, you will need additional tools — see “What else
to download and where” below.

Current snapshots

GNU Pascal is subject to steady development. Alpha and beta snapshots (source only,
use at your own risk) can be found at:

http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/

What else to download and where

When you are using GNU Pascal on a DOS system, you will need either the DJGPP or
the EMX development environment (see below). On an OS/2 system, you will need EMX.
On an MS Windows 95/98/NT system you will need either the CygWin or the mingw32 ot
the MSYS environment.

GNU Pascal uses the compiler back-end from the GNU Compiler Collection, GNU
CC or GCC. If you want to compile GPC, you will need the source of GCC as well as
the source of GPC itself. From the same place as GPC, please download GCC ‘2.8.1,
2.95.x, 3.2.x%, 3.3.xor 3.4.x". (It is also available from any GNU mirror; see
http://www.gnu.org/software/gcc/.)

http://www.gnu-pascal.de/current/
http://www.gnu-pascal.de/binary/
http://www.gnu-pascal.de/alpha/
http://www.gnu-pascal.de/beta/
http://www.gnu.org/software/gcc/

34 The GNU Pascal Manual

Libraries

For some of GPC’s units, you will need some standard libraries. In particular:

Unit Platform Library

CRT Unix/terminal ncurses >= 5.0 (1), (2)

CRT Unix/X11 PDCurses (2)

CRT Dos, MS-Windows PDCurses (3)

GMP any gmp

RegEx any rx

(debugging) Unix, MS-Windows ElectricFence (4)
Notes:

(1) ncurses version 5.0 or newer is strongly recommended because older versions contain
a bug that severely affects CRT programs.

(2) You can install both ncurses and PDCurses on a Unix system, and choose at compile
time whether to generate a terminal or X11 version of your program.

(3) ncurses also runs under MS-Windows with CygWin (not mingw32, however), but
doesn’t appear to behave much differently from PDCurses on that platform.

(4) ElectricFence is not used by any unit, but can be used for debugging memory allo-
cation bugs by simply linking it (see the accompanying documentation).

You can find those libraries on many places on the Net. Also, many GNU/Linux distri-
butions, DJGPP mirrors and other OS distributions already contain some of the libraries.
In any case, you can find the sources of the libraries (sometimes together with patches that
you should apply before building if you choose to build from the sources) and binaries for
some platforms in

http://www.gnu-pascal.de/1libs/

For more information and descriptions of these libraries, see Section 3.2.4 |[Libraries|,
page 22.

DJGPP

DJGPP is available from any SimTel mirror in the ‘gnu/djgpp’ subdirectory; for ad-
dresses look into the DJGPP FAQ. To use GNU Pascal you need at least

— the C library, ‘v2/djdev201.zip’, and
— ‘binutils’ (assembler, etc.), ‘v2gnu/bnu270b.zip’.

We also recommend you to get:
— the ‘make’ utility, ‘v2gnu/mak375b.zip’
— the GNU debugger, ‘v2gnu/gdb416b.zip’
— the DJGPP FAQ, ‘v2faq/faq211b.zip’
— the GRX graphics library, http://www.gnu.de/software/GRX/

— PENG, http://fjf.gnu.de/peng/, an integrated development environment, similar
to BP’s one, written in GNU Pascal, or

— RHIDE, ‘v2app/rhide.zip’, another integrated development environment, or

— DevPascal, http://www.bloodshed.net/devpascal.html, an integrated development
environment for mingw32.

http://www.gnu-pascal.de/libs/
http://www.delorie.com/djgpp/
http://www.delorie.com/djgpp/v2faq/
http://www.gnu.de/software/GRX/
http://fjf.gnu.de/peng/
http://www.bloodshed.net/devpascal.html

Chapter 4: How to download, compile and install GNU Pascal. 35

EMX

EMX is an environment for creating 32-bit applications for DOS and OS/2. To develop
EMX programs with GNU Pascal you need at least

— the EMX runtime package, ‘emxrt.zip’,
— the EMX development system, ‘emxdev*.zip’, and
— the GNU development tools, ‘gnudev*.zip’.
If your DOS box has DPMI (it does if you are using MS Windows or OS/2) you will also
need RSX, available from the same sites as EMX in the subdirectory ‘rsxnt’.

The GNU development tools contain the GNU C compiler which is in fact not needed
to use GNU Pascal. However, the C library is needed.

CygWin

CygWin is an environment which implements a POSIX layer under MS Windows, giving
it large parts of the functionality of Unix. CygWin contains development tools such as an
assembler, a linker, etc. GPC needs for operation. More information about CygWin can be
found at

http://cygwin.com

mingw32

The Minimalists” GNU Win32 environment, mingw32, allows a large number of Unix
programs — including GPC and GCC — to run under MS Windows 95/98 /NT using native
MS libraries. mingw32 ressources can be found at

http://www.mingw.org

4.2 Installation instructions for a GPC binary distribution

To install a binary distribution, cd to the root directory and unpack the archive while
preserving the stored directory structure. Under a Unix compatible system with GNU tar
installed, the following (performed as ‘root’) will do the job:

cd /
tar xzf archive.tar.gz

If you are using a ‘tar’ utility other than GNU tar, it might be necessary to do the
above in an explicit pipe:

cd /
gzip -c -d archive.tar.gz | tar xf -

Some binary distributions are now distributed packed with ‘bzip2’. You can recognize
them by their file name suffix ‘.bz2’ instead of ‘. gz’. For such archives, make sure you have
‘bunzip2’ installed and then use the following command:

cd /
tar xjf archive.tar.bz2

Or:

http://cygwin.com
http://www.mingw.org

36

The GNU Pascal Manual

cd /
bunzip2 -c -d archive.tar.bz2 | tar xf -

If you want to install a GPC binary distribution in another directory than it was prepared

for (for example, if you do not have root access to the computer and want to install GPC
somewhere under your home directory), you can do the following:

Unpack the archive file in a directory of your choice (see above).
‘cd’ to the “prefix” directory of the distribution (for instance ‘usr/local’).
Run the script install-gpc-binary, available from http://www.gnu-pascal.de/binary/ |}

Follow the instructions in the script.

To install a ZIP archive under DOS with ‘PKunzip’, ‘cd’ to the appropriate directory

(usually ‘\’ for EMX, ‘\DJGPP’ for DJGPP), then call ‘PKunzip’ with the ‘-d’ option:

C:\> cd djgpp
C:\DJGPP> pkunzip -d archive.zip

where ‘archive.zip’ is the name of the distribution file.
For DJGPP you must edit your ‘djgpp.env’ in the ‘DIJGPP’ directory to complete the

installation: Please copy the entries from ‘[gcc]’ to create a new ‘[gpc]’ section. The
result may look as follows:

[gccel
COMPILER_PATH=Y,/>;COMPILER_PATHY%DJDIRY,/bin
LIBRARY_PATH=Y/>;LIBRARY_PATHY%DJDIRY,/1ib

[gpc]
COMPILER_PATH=Y/>;COMPILER_PATHY%DJDIRY/bin

LIBRARY_PATH=Y/>;LIBRARY_PATH},%,DJDIR’/1ib

If you are using the DJGPP version of GPC but do not have a ‘DJGPP’ directory, please

download and install DJGPP (see Section 4.1 [Download], page 33).

Binary distributions include ‘libgcc.a’ and ‘specs’, files that are normally part of GCC.

If you have GCC installed, they will be replaced unless you manually install the archive.

4.3 Compiling GPC

The preferred way to distribute GNU software is distribution of the source code. How-

ever, it can be a non-trivial exercise to build GNU Pascal on some non-Unix systems, so
we also provide ready-to-run binaries for a number of platforms. (See Section 4.2 [Binary
Distributions|, page 35 for how to install a binary distribution.)

GPC is based on the GNU Compiler Collection, GNU CC or GCC. You will need the

GCC sources to build it. It must be the same version as the one GPC is implemented with
-2.8.1, 2.95.x, 3.2.%, 3.3.x or 3.4.x as of this writing. Although you need GCC to
build the GNU Pascal compiler, you don’t need GCC to compile Pascal programs once GNU
Pascal is installed. (However, using certain libraries will require compiling C wrappers, so
it is a good idea to install the C compiler as well.)

Because GNU Pascal shares its back-end with GCC, it should run on any system sup-

ported by GCC. A full list of platforms supported by GCC can be found in section “Chapter
4” in “Using and Porting GNU CC”.

http://www.gnu-pascal.de/binary/

Chapter 4: How to download, compile and install GNU Pascal. 37

The GCC source can be obtained from any mirror of the GNU FTP site,
ftp://ftp.gnu.org/gnu/gcc/. The “core” distribution is sufficient for GPC.

Here is the generic procedure for installing GNU Pascal on a Unix system. See Section 4.4
Compilation Notes|, page 40 for extra information needed to install GPC on DOS-like
platforms.

1. Checking the prerequisites

Make sure that GNU make is installed and that you use it in the following
steps. When unsure, you can try ‘make --version’ and/or ‘gmake --version’. It
should tell you that it is GNU make. If you don’t have it, you can obtain it from
http://www.gnu.org/software/make/.

(In the following, we will simply speak of ‘make’ when invoking GNU make; you might
need to call ‘gmake’ instead.)

You also need a ‘patch’ program. If such a program is not installed on your system,
you can get GNU patch from http://www.gnu.org/directory/patch.html.

For extracting the example programs from the documentation to the ‘doc/docdemos’
directory a non-crippled ‘sed’ is needed. GNU sed is known to work.

If you have downloaded a “minimal” source distribution, most derived files have to be
rebuilt. This is done automatically when building GPC, but you need additional tools:

‘bash’, ‘bzip2’, GNU ‘sed’, GNU ‘awk’, GNU ‘m4’, ‘bison’ (at least version 2.1), ‘flex’
(version 2.5.27), ‘autoconf’ (version 2.12), ‘texinfo’ (at least version 4.2), ‘help2man’.

Make sure that these are installed. The minimal distributions are compressed with
‘bzip2’ instead of ‘gzip’, so substitute it in the instructions below.

If your bison and flex programs are installed under different names, you may have to
set some or all of the following environment variables before running ‘configure’:
FLEX=/path/to/flex
LEX=/path/to/flex
BISON=/path/to/bison
YACC=/path/to/bison
INTLBISON=/path/to/bison

If you want to build the GPC WWW pages you will also need a TEX distribution
(including ‘pdftex’ and ‘dvips’).

If you run into trouble during the installation process, please check whether you are
using outdated versions of the required utilities and upgrade if necessary.

The GNU versions of the packages above are available from
http://www.gnu.org/software/, in a subdirectory whose name is the
name of the package.

2. Unpacking the source

From a directory of your choice (e.g. ‘/home/fred’), unpack the GCC and GNU Pascal
source distributions. This will create separate subdirectories for GCC and GPC. Let
us assume ‘gcc-3.4.3" and ‘gpc-20041218’ in this example.

% cd /home/fred

% bzip2 -d < gcc-core-3.4.3.tar.bz2 | tar xf -

% gzip -c -d gpc-20041218.tar.gz | tar xf -

ftp://ftp.gnu.org/gnu/gcc/
http://www.gnu.org/software/make/
http://www.gnu.org/directory/patch.html
http://www.gnu.org/software/

38

The GNU Pascal Manual

‘cd’ to the GPC directory and move the contents (a subdirectory ‘p’) to the subdirectory
‘gee’ of the GCC directory:

% mv /home/fred/gpc-20041218/p /home/fred/gcc-3.4.3/gcc/

Instead of moving the directory, it is now also possible to make a symbolic link (if the
OS supports symlinks). This is useful if you want to build GPC with several different
GCC versions:

% 1n -s /home/fred/gpc-20041218/p /home/fred/gcc-3.4.3/gcc/p

It is recommended, though not required, to use a separate directory for building the
compiler, rather than compiling in the source directory. In this example, let us create
‘/home/fred/gpc-build’ for this purpose:

% mkdir /home/fred/gpc-build

If you use a separate directory, you do not need to write into the GCC source directory
once you have patched the GCC source (see below), and can build GPC for more than
one platform from the same source tree.

In case you are re-using a directory where you have already built GCC and/or GPC
for a different target machine, do ‘make distclean’ to delete all files that might be
invalid. One of the files this deletes is ‘Makefile’; if ‘make distclean’ complains that
‘Makefile’ does not exist, it probably means that the directory is already suitably
clean.

Configuring and building GCC

GNU Pascal is automatically configured with GCC. Configuration of GCC is treated in
depth in section “Chapter 4”7 in “Using and Porting GNU CC”. The normal procedure
is as follows:
‘cd’ to the GPC build directory. From there, run the ‘configure’ script in the GCC
source directory:

% cd /home/fred/gpc-build

% /home/fred/gcc-3.4.3/configure --enable-languages=pascal
This creates all the necessary config files, links and Makefile in the GCC object direc-
tory.
Note 1: The configuration will prompt you for patching the GCC source for GPC
support, so you need write access to that directory. All changes to GCC are surrounded
by ‘#ifdef GPC ... #endif’, so they should not interfere when you build a C compiler
from this source tree.

Note 2: The ‘--enable-languages=pascal’ option means that we only want to build
the Pascal compiler and not, for instance, the C++ compiler.

Note 3: The standard base directory for installing GCC and GPC is ‘/usr/local’. If
you want to install files to an alternate directory dir, specify ‘~-prefix=dir’ when you
run ‘configure’. For installing into a system directory such as ‘/usr/local’ you will,
of course, need appropriate permissions (often root). Therefore, if you want to install
GPC on a system where you don’t have those permissions, you must specify a prefix
(e.g., ‘$HOME/usr’).

Putting other GNU tools in place

Some environments require other GNU tools (such as the GNU assembler or linker)
instead of the standard system tools for GCC to work. (See the GCC installation

Chapter 4: How to download, compile and install GNU Pascal. 39

instructions for details.) If this is the case for your system, install the required tools
in the GPC build directory under the names ‘as’, ‘1d’, or whatever is appropriate.
This will enable the compiler to find the proper tools for compilation of the program
‘enquire’ (a part of GCC) and to install the GNU tools to a place where they are
found by GCC but do not interfere with the standard system tools.

Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

5. Compiling GPC

Once you are satisfied with the configuration as determined by ‘configure’, you can
build the compiler:

% make

Notice that this procedure will build the C compiler (and maybe some other compilers)
too, because that is used to compile the GPC runtime library.

Optionally, you may supply CFLAGS, LDFLAGS or RTSFLAGS. CFLAGS is used
for compiler and RTS, RTSFLAGS are for RTS only, i.e.: ‘make CFLAGS="-02"
RTSFLAGS=-Wall’

Note: The documentation may fail to build from *.texi sources if GCC 2.95.x tries
to use an older version of ‘makeinfo’ supplied in GCC package itself. This can be
prevented by supplying explicit instruction to use your system’s ‘makeinfo’:

% make MAKEINFO=‘which makeinfo®
optionally followed by the rest of arguments.
6. Completing the installation
When everything has been compiled, you can check the installation process with:
% make -n install

To complete the installation, run the command ‘make install’. You need write access
to the target directories (‘/usr/local/bin’, ‘/usr/local/lib’, ‘/usr/local/info’,
‘/usr/local/doc’, and ‘/usr/local/man’ in this example), so this is usually done as
‘root’:

% su -c "make install"

If you want to install only the Pascal compiler (for example if you already have the
correct version of GCC installed), ‘cd’ to the ‘gcc’ subdirectory of the build directory
(e.g. ‘/home/fred/gpc-build/gcc’) and run ‘make pascal.install’. This installation
process does not overwrite existing copies of ‘libgcc.a’ or ‘specs’, should they exist.

However, if you do not have the exactly matching GCC version installed, you might need
some additional files (otherwise GPC will complain about missing files at runtime). You
can install them by doing ‘make pascal.install-with-gcc’ in the ‘gcc’ subdirectory
of the build directory.

There is a (partial) translation of the GPC manual into Croatian available now. It is
not installed by default. If you want to install it, do a ‘pascal.install-hr’ in the
‘gec’ directory. This will install the manpage ‘gpc-hr.1’ and the info documentation
‘gpc-hr.infox’. Other formats like PS, PDF and HTML can be built manually (it’s
also easy to add appropriate make targets for them when needed).

40 The GNU Pascal Manual

Also from the ‘gcc’ subdirectory you can do some more “exotic” builds. For instance,
you can build the GPC WWW pages by typing ‘make pascal.html’ or a binary dis-
tribution by typing ‘make pascal.bindist’. See the ‘Makefile’ in that directory for
more examples.

4.4 Compilation notes for specific platforms

4.4.1 MS-DOS with DJGPP

The only compiler that is capable of compiling the GNU Compiler Collection (GNU CC
or GCC) under MS-DOS is GCC itself. In order to compile GPC or GCC for MS-DOS with
DJGPP you will therefore need either a working copy of DJGPP installed, or you will have
to cross-build from a non-MS-DOS system.

Building GPC under MS-DOS with DJGPP follows the same scheme as building GPC
under a Unix-like system: Place the ‘p’ subdirectory in the ‘gcc’ directory and follow the
instructions for compiling GCC. This requires ‘bash’ and many other tools installed, and
you must be very careful at many places to circumvent the limitations of the DOS platform.

Our preferred way to build GPC for DJGPP is to cross-build it from a Unix-like platform
— which is much easier. For instructions, see Section 4.5 [Cross-Compilers|, page 40 and
Section 4.6 [Crossbuilding], page 41.

4.4.2 MS-DOS or OS/2 with EMX

EMX is a free 32-bit DOS extender which adds some properties of Unix to MS-compatible
DOS and IBM’s OS/2 operating systems.

As of this writing, we are not aware of current versions of GCC for EMX, and EMX
support in GPC has not been maintained. Please contact us if you know about recent
development in EMX and are interested in continuing EMX support in GPC.

4.4.3 MS Windows 95/98 /NT

There are two ports of the GNU development tools to MS Windows 95/98/NT: CygWin
and mingw32.

The CygWin environment implements a POSIX layer under MS Windows, giving it
large parts of the functionality of Unix. Thus, compiling GCC and GPC under the CygWin
environment can be done following the instructions for compiling it under a Unix-like system
(see Section 4.3 [Compiling GPC], page 36).

The Minimalists” GNU Win32 environment, mingw32, uses the native ‘crtdll.dll’
library of MS Windows. It is much smaller than CygWin, but it is not self-hosting and
must be crossbuilt from another system (see Section 4.6 [Crossbuilding], page 41).

4.5 Building and Installing a cross-compiler

GNU Pascal can function as a cross-compiler for many machines.
Information about GNU tools in a cross-configuration can be found at
‘ftp://ftp.cygnus.com/pub/embedded/crossgcc/’.

Chapter 4: How to download, compile and install GNU Pascal. 41

If you want a cross-compiler targetting Linux you may use Dan Kegel’s crosstool from
‘http://www.kegel.com/crosstool/’

Since GNU Pascal generates assembler code, you need a cross-assembler that GNU
Pascal can run, in order to produce object files. If you want to link on other than the target
machine, you need a cross-linker as well. It is straightforward to install the GNU binutils
to act as cross-tools — see the installation instructions of the GNU binutils for details.

You also need header files and libraries suitable for the target machine that you can
install on the host machine. Please install them under ‘prefix/platform/include/’, for
instance ‘/usr/local/i386-pc-msdosdjgpp/include/’ for a cross-compiler from a typical
Unix-like environment to MS-DOS with DJGPP.

Configuration and compilation of the compiler can then be done using the scripts ‘cfgpc’
and ‘mkgpc’ which are included in the source distribution in the subdirectory ‘p/script’.
Please call them with the ‘-h’ option for instructions.

4.6 Crossbuilding a compiler

Using a cross-compiler to build GNU Pascal results in a compiler binary that runs on
the cross-target platform. This is called “crossbuilding”. A possible reason why anybody
would want to do this, is when the platform on which you want to run the GNU Pascal
compiler is not self-hosting. An example is mingw32.

To crossbuild GNU Pascal, you have to install a cross-compiler for your target first, see
Section 4.5 [Cross-Compilers|, page 40.

As when building a cross-compiler, configuration and compilation of the compiler can
be done using the scripts ‘cfgpc’ and ‘mkgpc’ which are included in the source distribution
in the subdirectory ‘p/script’. Please call them with the ‘-h’ option for instructions.

42

The GNU Pascal Manual

Chapter 5: Command Line Options supported by GNU Pascal. 43

5 Command Line Options supported by GNU
Pascal.

GPC is a command-line compiler, i.e., to compile a program you have to invoke ‘gpc’
passing it the name of the file you want to compile, plus options.

GPC supports all command-line options that GCC knows, except for many preprocessor
options. For a complete reference and descriptions of all options, see section “GCC Com-
mand Options” in the GCC Manual. Below, you will find a list of the additional options
that GPC supports, and a list of GPC’s most important options (including some of those
supported by GCC as well).

You can mix options and file names on the command line. For the most part, the order
doesn’t matter. Order does matter, e.g., when you use several options of the same kind;
for example, if you specify ‘-L’ more than once, the directories are searched in the order
specified. Note: Since many options have multiletter names; multiple single-letter options
may not be grouped as is possible with many other programs: ‘-dr’ is very different from
‘-d -r’.

Many options have long names starting with ‘-’ or, completely equivalent ‘~f’. E.g.,
‘--mixed-comments’ is the same as ‘-fmixed-comments’. Some options tell GPC when
to give warnings, i.e. diagnostic messages that report constructs which are not inherently
erroneous but which are risky or suggest there may have been an error. Those options start
with ‘-W’.

Most GPC specific options can also be changed during one compilation by using compiler
directives in the source, e.g. ‘{$X+}’ or ‘{$extended-syntax}’ for ‘--extended-syntax’
(see Section 6.9 [Compiler Directives], page 105).

GPC understands the same environment variables GCC does (see section “Environment
Variables Affecting GCC” in the GCC manual). In addition, GPC recognizes
‘GPC_EXEC_PREFIX’ with the same meaning that ‘GCC_EXEC_PREFIX’ has to GCC. GPC
also recognizes ‘GCC_EXEC_PREFIX’, but ‘GPC_EXEC_PREFIX’ takes precedence.

Some of the long options (e.g., ‘-—unit-path’) take an argument. This argument is
separated with a ‘=’ sign, e.g.:

--unit-path=/home/foo/units

5.1 GPC options besides those of GCC.

The following table lists the command line options GPC understands in addition to those
understood by GCC.

—--debug-tree
(For GPC developers.) Show the internal representation of a given tree node
(name or address).

--debug-gpi
(For GPC developers.) Show what is written to and read from GPI files (huge
output!).

--debug-automake
(For GPC developers.) Give additional information about the actions of au-
tomake.

44 The GNU Pascal Manual

--debug-source
Output the source while it is being processed to standard error.

--no-debug-source
Do not output the source while it is being processed (default).

--disable-debug-info
Inhibit ‘-g’ options (temporary work-around, this option may disappear in the
future).

--progress-messages
Output source file names and line numbers while compiling.

--no-progress-messages
Do not output source file names and line numbers while compiling (default).

--progress-bar
Output number of processed lines while compiling.

--no-progress-bar
Do not output number of processed lines while compiling (default).

-—automake-gpc
Set the Pascal compiler invoked by automake

--automake-gcc
Set the C compiler invoked by automake.

-—automake-g++
Set the C++ compiler invoked by automake

-—amtmpfile
(Internal switch used for automake).

-—autolink
Automatically link object files provided by units/modules or ‘{$L ...} (de-
fault).

-—-no—autolink
Do not automatically link object files provided by units/modules/‘{$L ...}".

-—automake
Automatically compile changed units/modules/‘{$L ...} files and link the ob-
ject files provided.

—--no-automake
Same as ‘-——no-autolink’.

—-—autobuild
Automatically compile all units/modules/‘{$L ...}’ files and link the object
files provided.

--no-autobuild
Same as ‘-——no-autolink’.

-—-maximum-field-alignment
Set the maximum field alignment in bits if ‘pack-struct’ is in effect.

Chapter 5: Command Line Options supported by GNU Pascal. 45

--ignore-packed
Ignore ‘packed’ in the source code (default in ‘--borland-pascal’).

--no-ignore-packed
Do not ignore ‘packed’ in the source code (default).

--ignore-garbage-after-dot
Ignore anything after the terminating ‘.’ (default in ‘~-borland-pascal’).

--no-ignore-garbage-after-dot
Complain about anything after the terminating ‘.’ (default).

--extended-syntax
same as ‘-—ignore-function-results —-pointer-arithmetic
--cstrings-as-strings -Wno-absolute’ (same as ‘{$X+}’).

--no-extended-syntax
Opposite of ‘--extended-syntax’ (same as ‘{$X-}’).

--ignore-function-results
Do not complain when a function is called like a procedure.

--no-ignore-function-results
Complain when a function is called like a procedure (default).

—--pointer-arithmetic
Enable pointer arithmetic.

--no-pointer—-arithmetic
Disable pointer arithmetic (default).

--cstrings-as-strings
Treat CStrings as strings.

--no-cstrings-as—-strings
Do not treat CStrings as strings (default).

-Wabsolute
Warn about variables at absolute adresses and ‘absolute’ variable with non-
constant addresses (default).

-Wno-absolute
Do not warn about variables at absolute adresses and ‘absolute’ variable with
non-constant addresses.

--short-circuit
Guarantee short-circuit Boolean evaluation (default; same as ‘{$B-}’).

--no-short-circuit
Do not guarantee short-circuit Boolean evaluation (same as ‘{$B+}’).

--mixed-comments
Allow comments like ‘{ ... %)’ as required in ISO Pascal (default in ISO
7185/10206 Pascal mode).

--no-mixed-comments
Ignore ‘{’ and ‘}’ within ‘(x ... *)’ comments and vice versa (default).

46 The GNU Pascal Manual

—--nested-comments
Allow nested comments like ‘{ { } } and ‘(x (* %) *)’

--no-nested-comments
Do not allow nested comments (default).

--delphi-comments
Allow Delphi style ‘//’ comments (default).

--no-delphi-comments
Do not allow Delphi style ‘///’ comments.

--macros Expand macros (default)

--no-macros
Do not expand macros (default with ‘--ucsd-pascal’, ‘--borland-pascal’ or
‘~-delphi’).

--truncate-strings
Truncate strings being assigned to other strings of too short capacity.

--no-truncate-strings
Treat string assignments to other strings of too short capacity as errors.

—-—exact-compare-strings
Do not blank-pad strings for comparisons.

--no-exact-compare-strings
Blank-pad strings for comparisons.

--double-quoted-strings
Allow strings enclosed in "\" (default).

--no-double-quoted-strings
Do not allow strings enclosed in "\" (default with dialect other than
‘--mac-pascal’).

--longjmp-all-nonlocal-labels
Use ‘longjmp’ for all nonlocal labels (default for Darwin/PPC).

--no-longjmp-all-nonlocal-labels
Use ‘longjmp’ only for nonlocal labels in the main program (default except for

Darwin/PPC).

-—iso-goto-restrictions
Do not allow jumps into structured instructions (default).

--no-iso-goto-restrictions
Allow jumps into structured instructions (default in ‘--borland-pascal’).

--nonlocal-exit
Allow non-local ‘Exit’ statements (default in ‘--ucsd-pascal’ and
‘~-mac-pascal’).

--no-nonlocal-exit
Do not allow non-local ‘Exit’ statements (default).

Chapter 5: Command Line Options supported by GNU Pascal. 47

--io-checking
Check I/O operations automatically (same as ‘{$I+}’) (default).

--no-io-checking
Do not check 1/O operations automatically (same as ‘{$I-}’).

—--pointer-checking-user-defined
Use user-defined procedure for validating pointers.

--no-pointer-checking-user-defined
Do not use user-defined procedure for validating pointers (default).

—--pointer-checking
Validate pointers before dereferencing.

--no-pointer-checking
Do not validate pointers before dereferencing (default).

--object-checking
Check for valid objects on virtual method calls (default).

--no-object-checking
Do not check for valid objects on virtual method calls.

--range—checking
Do automatic range checks’) (default).

--no-range-checking
Do not do automatic range checks (same as ‘{$R-}’).

--range—and-object-checking
Same as ‘--range-checking --object-checking’, same as ‘{$R+}".

--no-range-and-object-checking
Same as ‘--no-range-checking --no-object-checking’, same as ‘{$R-1}".

--case-value-checking
Cause a runtime error if a ‘case’ matches no branch (default in ISO Pascal
modes).

--no-case-value-checking
Do not cause a runtime error if a ‘case’ matches no branch (default).

--stack-checking
Enable stack checking (same as ‘{$S+}").

--no-stack-checking
Disable stack checking (same as ‘{$S-} (default)’).

--read-base-specifier
In read statements, allow input base specifier ‘n#’ (default).
--no-read-base-specifier
In read statements, do not allow input base specifier ‘n#’ (default in ISO 7185
Pascal).

--read-hex
In read statements, allow hexadecimal input with ‘$’ (default).

48 The GNU Pascal Manual

--no-read-hex
In read statements, do not allow hexadecimal input with ‘$’ (default in ISO
7185 Pascal).

--read-white-space
In read statements, require whitespace after numbers.

--no-read-white-space
In read statements, do not require whitespace after numbers (default).

--write-clip-strings
In write statements, truncate strings exceeding their field width (‘Write
(SomeLongString : 3)’).

--no-write-clip-strings
Do not truncate strings exceeding their field width.

-—-write-real-blank
Output a blank in front of positive reals in exponential form (default).

--no-write-real-blank
Do not output a blank in front of positive reals in exponential form.

--write-capital-exponent

Write real exponents with a capital ‘E’.
--no-write-capital-exponent

Write real exponents with a lowercase ‘e’.

--transparent-file-names
Derive external file names from variable names.

--no-transparent-file-names
Do not derive external file names from variable names (default).

--field-widths
Optional colon-separated list of default field widths for Integer, Real, Boolean,
LonglInt, LongReal.

—--no-field-widths
Reset the default field widths.

--pedantic
Reject everything not allowed in some dialect, e.g. redefinition of its keywords.

--no-pedantic
Don’t give pedantic warnings.
-—typed-address
Make the result of the address operator typed (same as ‘{$T+}’, default).

--no-typed-address
Make the result of the address operator an untyped pointer (same as ‘{$T-}’).

-—enable-keyword
Enable a keyword, independently of dialect defaults.

Chapter 5: Command Line Options supported by GNU Pascal.

--disable-keyword
Disable a keyword, independently of dialect defaults.

-—implicit-result
Enable implicit ‘Result’ for functions (default only in ‘--delphi’).

--no-implicit-result
Disable implicit ‘Result’ for functions.

—--enable-predefined-identifier
Enable a predefined identifier, independently of dialect defaults.

--disable-predefined-identifier
Disable a predefined identifier, independently of dialect defaults.

--assertions
Enable assertion checking (default).

--no-assertions
Disable assertion checking.

--setlimit
Define the range for ‘set of Integer’ etc..

--gpc-main
External name for the program’s entry point (default: ‘main’).

--propagate-units
Automatically re-export all imported declarations.

--no-propagate-units
Do not automatically re-export all imported declarations.

—-—interface-only

49

Compile only the interface part of a unit/module and exit (creates ‘.gpi’ file,

no ‘.o’ file.

--implementation-only
Do not produce a GPI file; only compile the implementation part.

—-—-executable-file—name

Name for the output file, if specified; otherwise derive from main source file

name.

--unit-path
Directories where to look for unit/module sources.

--no-unit-path
Forget about directories where to look for unit/module sources.

--object-path
Directories where to look for additional object (and source) files.

--no-object-path

Forget about directories where to look for additional object (and source) files.

--executable-path
Path where to create the executable file.

50 The GNU Pascal Manual

--no-executable-path
Create the executable file in the directory where the main source is (default).

--unit-destination-path
Path where to create object and GPI files of Pascal units.

--no-unit-destination-path
Create object and GPI files of Pascal units in the current directory (default).

--object-destination-path
Path where to create additional object files (e.g. of C files, not Pascal units).

--no-object-destination-path
Create additional object files (e.g. of C files, not Pascal units) in the current
directory (default).

--disable-default-paths
Do not add a default path to the unit and object path.

--gpi-destination-path
(Internal switch used for automake).

--uses Add an implicit ‘uses’ clause.

-—init-modules
Initialize the named modules in addition to those imported regularly; kind of a
kludge.

—--cidefine
Define a case-insensitive macro.

—--csdefine
Define a case-sensitive macro.

--big-endian

Tell GPC that the system is big-endian (for those targets where it can vary).
--little-endian

Tell GPC that the system is little-endian (for those targets where it can vary).
--print-needed-options

Print the needed options.
-Wwarnings

Enable warnings (same as ‘{$W+}’).
-Wno-warnings

Disable all warnings (same as ‘{$W-1}’).
-Widentifier-case-local

Warn about an identifier written with varying case within one
program/module/unit.

-Wno-identifier-case-local
Same as ‘-Wno-identifier-case’.

-Widentifier-case
Warn about an identifier written with varying case.

Chapter 5: Command Line Options supported by GNU Pascal. 51

-Wno-identifier-case
Do not warn about an identifier written with varying case (default).

-Winterface-file-name
Warn when a unit/module interface differs from the file name.

-Wno-interface-file-name
Do not warn when a unit/module interface differs from the file name (default).

--methods-always-virtual
Make all methods virtual (default in ‘--mac-pascal’).

--no-methods-always-virtual
Do not make all methods virtual (default).

--objects-are-references
Turn objects into references (default in ‘--mac-pascal’).

--no-objects-are-references
Do not turn objects into references (default).

--objects-require-override

Require override directive for objects (default in ‘--mac-pascal’).
--no-objects-require-override

Do not require override directive for objects (default).

--delphi-method-shadowing
Redefining methods silently shadows old definition (default in ‘-~-delphi’).

--no-delphi-method-shadowing
Do not silently shadow method definitions (default).

--borland-objects
Choose Borland object model.

--mac-objects
Choose Mac object model.

--ooe-objects

Choose OOE object model.
--gnu-objects

Reset object model to default state.

—--preprocessed
Treat the input file as already preprocessed.

-nostdinc
Do not search standard system.

-remap Remap file names when including files.
-A Ignored.
-E Preprocess only.

-H Print the name of include files as they are used.

52 The GNU Pascal Manual

-P Do not generate #line directives.

-Wimplicit-abstract
Warn when an object type not declared ‘abstract’ contains an abstract method
(default).

-Wno-implicit-abstract
Do not warn when an object type not ‘declared’ abstract contains an abstract
method.

-Winherited-abstract
Warn when an abstract object type inherits from a non-abstract one (default).

-Wno-inherited-abstract
Do not warn when an abstract object type inherits from a non-abstract one.

-Wobject-assignment
Warn when when assigning objects or declaring them as value parameters or
function results (default).

-Wno-object-assignment
Do not warn when assigning objects or declaring them as value parameters or
function results (default in ‘--borland-pascal’).
~Wimplicit-io
Warn when ‘Input’ or ‘Output’ are used implicitly.
-Wno-implicit-io
Do not warn when ‘Input’ or ‘Output’ are used implicitly (default).

-Wfloat-equal
Warn about ‘=" and ‘<>’ comparisons of real numbers.

-Wno-float-equal
Do not warn about ‘=" and ‘<>’ comparisons of real numbers.

-Wtyped-const
Warn about misuse of typed constants as initialized variables (default).

-Wno-typed-const
Do not warn about misuse of typed constants as initialized variables.

-Wnear-far
Warn about use of useless ‘near’ or ‘far’ directives (default).

-Wno-near-far
Do not warn about use of useless ‘near’ or ‘far’ directives.

-Wunderscore
Warn about double/leading/trailing underscores in identifiers.

-Wno-underscore
Do not warn about double/leading/trailing underscores in identifiers.

-Wsemicolon
Warn about a semicolon after ‘then’, ‘else’ or ‘do’ (default).

Chapter 5: Command Line Options supported by GNU Pascal. 53

-Wno-semicolon
Do not warn about a semicolon after ‘then’; ‘else’ or ‘do’.

-Wlocal-external
Warn about local ‘external’ declarations.

-Wno-local-external

Do not warn about local ‘external’ declarations.
-Wdynamic-arrays

Warn about arrays whose size is determined at run time (including array slices).
-Wno-dynamic-arrays

Do not warn about arrays whose size is determined at run time (including array

slices).

-Wmixed-comments
Warn about mixed comments like ‘{ ... *)’.

-Wno-mixed-comments
Do not warn about mixed comments.

-Wnested-comments
Warn about nested comments like ‘{ { } }’.

-Wno-nested-comments
Do not warn about nested comments.

--classic-pascal-level-0
Reject conformant arrays and anything besides ISO 7185 Pascal.

--standard-pascal-level-0
Synonym for ‘--classic-pascal-level-0".

--classic-pascal
Reject anything besides ISO 7185 Pascal.

--standard-pascal
Synonym for ‘--classic-pascal’.

--extended-pascal
Reject anything besides ISO 10206 Extended Pascal.

--object-pascal
Reject anything besides (the implemented parts of) ANSI draft Object Pascal.

--ucsd-pascal
Try to emulate UCSD Pascal.

--borland-pascal
Try to emulate Borland Pascal, version 7.0.

—--delphi Try to emulate Borland Pascal, version 7.0, with some Delphi extensions.

--pascal-sc
Be strict about the implemented Pascal-SC extensions.

54 The GNU Pascal Manual

--vax-pascal
Support (a few features of) VAX Pascal.

--sun-pascal
Support (a few features of) Sun Pascal.

--mac-pascal
Support (some features of) traditional Macintosh Pascal compilers.

--gnu-pascal
Undo the effect of previous dialect options, allow all features again.

5.2 The most commonly used options to GPC

As the most simple example, calling
gpc foo.pas

tells GPC to compile the source file ‘foo.pas’ and to produce an executable of the
default name which is ‘foo.exe’ on EMX, ‘a.exe’ on Cygwin, both ‘a.out’ and ‘a.exe’ on
DJGPP, and ‘a.out’ on most other platforms.

Users familiar with BP, please note that you have to give the file name extension .pas’:
GPC is a common interface for a Pascal compiler, a C, ObjC and C++ compiler, an as-
sembler, a linker, and perhaps an Ada and a FORTRAN compiler. From the extension of
your source file GPC figures out which compiler to run. GPC recognizes Pascal sources by
the extension ‘.pas’, ‘.p’, ‘.pp’ or ‘.dpr’. GPC also accepts source files in other languages
(e.g., *.c’ for C) and calls the appropriate compilers for them. Files with the extension .o’
or without any special recognized extension are considered to be object files or libraries to
be linked.

Another example:
gpc -02 -Wall --executable-file-name --automake --unit-path=units foo.pasf]
This will compile the source file ‘foo.pas’ to an executable named ‘foo’
(‘--executable-file-name’) with fairly good optimization (‘-02’), warning about
possible problems (‘-Wall’). If the program uses units or imports modules, they will be
searched for in a directory called ‘units’ (‘--unit-path’) and automatically compiled and
linked (‘--automake’).

The following table lists the most commonly used options to GPC.

-—automake
Check whether modules/units used must be recompiled and do the recompila-
tion when necessary.

——unit-path=dir[:dir...]
Search the given directories for units and object files.

--object-path=dir[:dir. . .]
Search the given directories for object files.

--unit-destination-path=dir
Place compiled units (GPI and object files) into the directory dir. The default
is the current directory.

Chapter 5: Command Line Options supported by GNU Pascal. 55

--object-destination-path=dir
Place compiled object files (e.g., from C files, but not from Pascal
units) into the directory dir. The default is the directory given with
‘-—unit-destination-path’.

--executable-path=dir
Place the executable compiled into the directory dir. The default is the main
source file’s directory.

-o file Place output in file file. This applies regardless to whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler
file, etc.

Since only one output file can be specified, it does not make sense to use ‘-o’
when compiling more than one input file, unless you are producing an executable
file as output.

--executable-file-name [=name]
Derive the executable file name from the source file name, or use name
as the executable file name. The difference to the ‘-0’ option is that
‘-—executable-file-name’ considers the ‘--executable-path’, while
‘-0’ does not and accepts a file name with directory. Furthermore,
‘~—executable-file-name’ only applies to executables, not to other output

formats selected.
-Ldir Search the directory dir for libraries. Can be given multiple times.
-Idir Search the directory dir for include files. Can be given multiple times.

-1library Search the library named library when linking. This option must be placed on
the command line after all source or object files or other libraries that reference
the library.

-0[n] Select the optimization level. Without optimization (or ‘-00’ which is the de-
fault), the compiler’s goal is to reduce the compilation time and to make de-
bugging produce the expected results. Statements are independent: if you stop
the program with a breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any other statement in
the same routine and get exactly the results you would expect from the source
code.

With optimization, the compiler tries to reduce code size and execution time.
The higher the value of n, the more optimizations will be done, but the longer
the compilation will take.

If you use multiple ‘-0’ options, with or without n, the last such option is the
one that is effective.

-g Produce debugging information suitable for ‘gdb’. Unlike some other compilers,
GNU Pascal allows you to use ‘-g’ with ‘-=0’. The shortcuts taken by optimized
code may occasionally produce surprising results: some variables you declared
may not exist at all; flow of control may briefly move where you did not expect
it; some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different

56 The GNU Pascal Manual

places because they were moved out of loops. Nevertheless it proves possible
to debug optimized output. This makes it reasonable to use the optimizer for
programs still in the testing phase.

-s Remove all symbol table and relocation information from the executable. Note:
this has no influence on the performance of the compiled executable.

-Wall Give warnings for a number of constructs which are not inherently erroneous
but which are risky or suggest there may have been an error. There are addi-
tional warning options not implied by ‘-Wall’, see the GCC warning options
(see section “Options to Request or Suppress Warnings” in the GCC manual),
while ‘-Wall’ only warns about such constructs that should be easy to avoid in
programs. Therefore, we suggest using ‘-Wall’ on most sources.

Note that some warnings (e.g., those about using uninitialized variables) are
never given unless you compile with optimization (see above), because otherwise
the compiler doesn’t analyze the usage patterns of variables.

-Werror Turn all warnings into errors.

-S Stop after the stage of compilation proper; do not assemble. The output is in
the form of an assembler code file for each source file. By default, the assembler
file name for a source file is made by replacing the extension with ‘.s’.

-c Compile and assemble the source files, but do not link. The output is in the
form of an object file for each source file. By default, the object file name for a
source file is made by replacing the extension with ‘.0o’.

-static On systems that support dynamic linking, this prevents linking with the shared
libraries, i.e. forces static linking. On other systems, this option has no effect.

-Dmacro [=def]
Define the macro and conditional symbol macro as def (or as ‘1’ if def is
omitted).

-b machine
The argument machine specifies the target machine for compilation. This is
useful when you have installed GNU Pascal as a cross-compiler.

-v Print (on standard error) the commands executed to run the stages of compila-
tion. Also print the version number of the compiler driver program and of the
preprocessor and the compiler proper.

--classic-pascal-level-0

--classic-pascal

--extended-pascal

--object-pascal

--ucsd-pascal

--borland-pascal

--delphi

--pascal-sc

--mac-pascal
GNU Pascal supports the features of several different Pascal standards and
dialects. The intention is to have common language, where features off all

Chapter 5: Command Line Options supported by GNU Pascal. 57

dialects are available. As result, the defualt language is the biggest dialect, with
most features. Sometimies features of different dialect conflict (in such cases
we usually provide more detailed switches to choose desired behaviour). These
switches turn on maximal compatiblity with given dialect. In particular they
tell GPC to restrict itself to the features of the specified standard. Warnings
about certain dangerous constructs which would be valid in the specified dialect
(e.g., assignment to a typed constant with ‘-~borland-pascal’) are suppressed.

By default, GNU Pascal allows the redefinition of some keywords. Each of
these switches causes GNU Pascal to forbid the redefinition of keywords of the
specified standard.

Most ISO 7185 Pascal programs should compile properly with or without
‘~-classic-pascal’. However, without this option, some constructs behave
in non-standard way. Moreover, certain GNU extensions and Pascal features
from other dialects are supported as well. With this option, they are rejected.

These options are not intended to be useful; they exist only to satisfy pedants
who would otherwise claim that GNU Pascal fails to support the ISO Standard
or is not really compatible to Borland Pascal, or whatever. We recommend,
rather, that users take advantage of the extensions of GNU Pascal and disregard
the limitations of other compilers.

-pedantic-errors
Produce errors rather than warnings for portability violations. Unlike in C,
this does not imply the ‘-pedantic’ option, so you can, for instance, use
‘-pedantic-errors’ without ‘-pedantic’, but with ‘--extended-pascal’.

--gpc-main=name
Name the entry point of the main program ‘name’ instead of ‘main’ on the
linker level. This is useful, e.g., when working with some C libraries which
define their own ‘main’ function and require the program’s main entry point
to be named differently. (This option should preferably be used as a compiler
directive in the unit or module which links to that strange C library, rather
than be given on the command-line.)

58

The GNU Pascal Manual

Chapter 6: The Programmer’s Guide to GPC 59

6 The Programmer’s Guide to GPC

This chapter is still under development.

This chapter tells you how the source of a valid GNU Pascal program should look like.
You can use it as tutorial about the GNU Pascal language, but since the main goal is to
document all special GPC features, implementation-dependent stuff, etc., expect a steep
learning curve.

This chapter does not cover how to compile your programs and to produce an executable
— this is discussed above in Chapter 5 [Invoking GPC|, page 43.

6.1 Source Structures

A source file accepted by GNU Pascal may contain up to one program, zero or more
ISO-style modules, and /or zero or more UCSD-style units. Units and modules can be mixed
in one project.

One trivial example for a valid GPC source file follows. Note that the code below may
either be in one source file, or else the unit and the program may be in separate source files.

unit DemoUnit;
interface
procedure Hello;
implementation
procedure Hello;
begin
Writeln (’Hello, world!?’)

end;

end.

program UnitDemo;

uses
DemoUnit;

begin

Hello
end.

6.1.1 The Source Structure of Programs

A generic GNU Pascal program looks like the following:
program name (Input, Output);

import_part

60 The GNU Pascal Manual

declaration_part

begin
statement_part
end.

The program headline may be omitted in GPC, but a warning will be given except in
‘-—borland-pascal’ mode.

While the program parameters (usually ‘Input’, ‘Output’) are obligatory in ISO Pascal
if you want to use ‘ReadlLn’ and ‘WriteLn’, they are optional in GNU Pascal. GPC will
warn about such missing parameters in ‘--extended-pascal’ mode. However if you give
parameters to the program headline, they work like ISO requires.

The import_part consists either of an ISO-style ‘import’ specification or a
UCSD/Borland-style ‘uses’ clause. While ‘import’ is intended to be used with interfaces
exported by ISO 10206 Extended Pascal modules, and ‘uses’ is intended to be used with
units, this is not enforced. (See also [uses|, page 485, [import], page 371.)

The declaration_part consists of label, constant, type, variable or subroutine declarations
in free order. However, every identifier must be declared before it is used. The only exception
are type identifiers pointing to another type identifier which may be declared below.

The statement_part consists of a sequence of statements.

As an extension, GPC supports a “declaring statement” which can be used in the state-
ment part to declare variables (see [var|, page 488).

6.1.2 Label Declaration

A label declaration has the following look:

label
label_name, ..., label;

A label declaration part starts with the reserved word label, which contains a list of

labels.

See also

[label], page 381, [goto], page 366

6.1.3 Constant Declaration

A constant declaration has the following look:

const
constant_identifier = constant_expression;

constant_identifier = constant_expression;

A constant declaration part starts with the reserved word const. It declares a con-
stant_identifier which is defined by constant_expression. This expression has to be evaluat-
able during compilation time, i.e. it can include numbers, parentheses, predefined operators,

Chapter 6: The Programmer’s Guide to GPC 61

sets and type casts (the last, however, is a Borland extension). In ISO 7185 Pascal, con-
stant_expression must be a constant or a set. All Pascal Dialects but ISO-Pascal allow the
use of these intrinsic functions in constant_expression:

[Abs], page 285, [Round], page 448, [Trunc|, page 478, [Chr], page 321, [Ord], page 414,
[Length], page 383, [Pred], page 428, [Succ], page 471, [SizeOf], page 463, [Odd], page 411.
In Borland Pascal, in the constant declaration part variables can be declared as well,
which are given an initial value. These variables are called “typed constants”. It is good
style to avoid this use, especially since Extended Pascal and GNU Pascal allow to initialize

a variable in variable declaration part or give a type a preset value on declaration.

const
FiveFoo = b;
StringFoo = ’string constant’;
AlphabetSize = Ord (’Z’) - Ord (’A’) + 1;
type
PInteger = "Integer; { Define a pointer to an Integer }
const
{ Constant which holds a pointer to an Integer at address 1234 }
AddressFoo = PInteger (1234);

e BP does not know initialized variables, only typed constants. Even worse, it allows
them to be misused as variables, without even warning. GPC supports this (unwillingly
;—), and warns unless in ‘--borland-pascal’ mode.

An example of a typed constant:
const
i: Integer = 0;
If you want to use it as a constant only, that’s perfectly fine. However, if you modify

[}

i’, we suggest to translate the declaration to an initialized variable. The EP syntax
is:
var
i: Integer value O;
GPC supports this as well as the following mixture of dialects:
var
i: Integer = 0;
Furthermore, you can also assign initialization values to types:
program InitTypeDemo;

type
MyInteger = Integer value 42;

var
i: MyInteger;

begin
Writeln (i)
end.

62 The GNU Pascal Manual

Here, all variables of type Mylnteger are automatically initialized to 42 when created.
e Arrays initializers look like this in BP:

program BPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String [20];

const
MyStrings: array [1 .. MyStringsCount] of Ident =
(’export’, ’implementation’, ’import’,
’interface’, ’module’);

begin
end.
And the following way in EP:

program EPArrayInitDemo;

const
MyStringsCount = 5;

type
Ident = String (20);

var
MyStrings: array [1 .. MyStringsCount] of Ident value
[1: ’export’; 2: ’implementation’; 3: ’import’;
4: ’interface’; 5: ’module’];

begin
end.

There seem to be pros and cons to each style. GPC supports both as well as just about
any thinkable mixture of them.

Some folks don’t like having to specify an index since it requires renumbering if you
want to add a new item to the middle. However, if you index by an enumerated type,
you might be able to avoid major renumbering by hand.

See also

Section 6.1.6.4 [Subroutine Parameter List Declaration], page 66

6.1.4 Type Declaration

A type declaration looks like this:
type

Chapter 6: The Programmer’s Guide to GPC 63

type_identifier = type_definition;

type_identifier = type_definition;

or, with preset content:

type
type_identifier

type_definition value constant_expression;

type_identifier = type_definition value constant_expression;

A type declaration part begins with the reserved word type. It declares a type_identifier
which is defined by type_definition. A type definition either can be an array, a record,
a schema, a set, an object, a subrange, an enumerated type, a pointer to another
type_identifier or simply another type_identifier which is to alias. If a schema type is to be
declared, type_identifier is followed by a discriminant enclosed in parentheses:

type_identifier (discriminant) = schema_type_definition;

If value is specified, followed by a constant satisfying the type definition, every variable
of this type is initialized with constant_expression, unless it is initialized by value itself.
The reserved word value can be replaced by ‘=", however value is not allowed in ISO-Pascal
and Borland Pascal, and the replacement by ‘=’ is not allowed in Extended Pascal.

Type declaration example

type
{ This side is the } { That side is the }
{ type declaration } { type definition %
Arrayfoo = array [0 .. 9] of Integer; { array definition }
Recordfoo = record { record definition 1}
Bar: Integer;
end;

{ schema def with discriminants ‘‘x, y: Integer’’ }
y g

SchemaFoo (x, y: Integer) = array [x .. y] of Integer;

CharSetFoo = set of Char; { Def of a set }
ObjectFoo object { Def of an object }
procedure DoAction;
constructor Init;
destructor Done;

end;
SubrangeFoo = -123..456; { subrange def }
EnumeratedFoo = (Pope,John,the,Second) ; { enum type def }
{ Def of a pointer to another type identifier }
PInteger = Tarrayfoo;
{ Def of an alias name for another type identifier }
IdentityFoo = Integer;

{ Def of an integer which was initialized by 123 }
InitializedFoo = Integer value 123;

64 The GNU Pascal Manual

See also

Section 6.2.1 [Type Definition], page 77, Section 6.2 [Data Types|, page 77, Section 6.1.5
[Variable Declaration|, page 64

6.1.5 Variable Declaration

A variable declaration looks like this:
var
var_identifier: type_identifier;
var_identifier: type_identifier;
or
var
var_identifier: type_definition;
var_identifier: type_definition;
and with initializing value:
var
var_identifier: type_identifier value constant_expression;
var_identifier: type_identifier value constant_expression;
or
var
var_identifier: type_definition value constant_expression;
var_identifier: type_definition value constant_expression;

A variable declaration part begins with the reserved word var. It declares a var_identifier
whose type either can be specified by a type identifier, or by a type definion which either
can be an array, a record, a set, a subrange, an enumerated type or a pointer to an type
identifier. If value is specified followed by a constant expression satisfying the specified type,
the variable declared is initialized with constant_expression. The reserved word value can
be replaced by ‘=’, however value is not allowed in ISO-Pascal and Borland Pascal, and
the replacement by ‘=’ is not allowed in Extended Pascal.

See also

Section 6.2.1 [Type Definition|, page 77, Section 6.1.4 [Type Declaration|, page 62, Sec-
tion 6.2 [Data Types|, page 77, Section 6.1.7.12 [The Declaring Statement], page 72, Sec-

tion 6.1.6.4 [Subroutine Parameter List Declaration|, page 66

6.1.6 Subroutine Declaration

Chapter 6: The Programmer’s Guide to GPC 65

6.1.6.1 The Procedure

procedure procedure_identifier;
declaration_part
begin
statement_part
end;
or with a parameter list:
procedure procedure_identifier (parameter_list) ;
declaration_part
begin
statement_part
end;

A procedure is quite like a sub-program: The declaration_part consists of label, constant,
type, variable or subroutine declarations in free order. The statement_part consists of a
sequence of statements. If parameter_list is specified, parameters can be passed to the
procedure and can be used in statement_part. A recursive procedure call is allowed.

See also

Section 6.1.6.2 [The Function], page 65, Section 6.1.6.4 [Subroutine Parameter List Dec-
laration|, page 66

6.1.6.2 The Function

function function_identifier: function_result_type;
declaration_part
begin
statement_part
end;
or with a parameter list:
function function_identifier (parameter_list): result_type;
declaration_part
begin
statement_part
end;

A function is a subroutine which has a return value of type function_result_type. It is
structured like the program: the declaration_part consists of label, constant, type, variable
or subroutine declarations in free order. The statement_part consists of a sequence of
statements. If parameter_list is specified, parameters can be passed to the function and can
be used in statement_part. The result is set via an assignment:

function_identifier := expression

Recursive function calls are allowed. Concerning the result type, ISO 7185 Pascal and
Borland Pascal only allow the intrinsic types, subranges, enumerated types and pointer
types to be returned. In Extended Pascal, function_result_type can be every assignable
type. Of course, there are no type restrictions in GNU Pascal as well. If extended syntax
is switched on, functions can be called like procedures via procedure call statement.

66 The GNU Pascal Manual

See also

Section 6.1.6.1 [The Procedure|, page 65, Section 6.1.6.4 [Subroutine Parameter List
Declaration], page 66, Section 6.2 [Data Types|, page 77

6.1.6.3 The Operator

GNU Pascal allows to define operators which can be used the infix style in expressions.
For a more detailed description, see Section 6.3 [Operators|, page 97

6.1.6.4 Subroutine Parameter List Declaration

parameter; ...; parameter

Each parameter can start with a prefix (see below) describing how the parameters are
passed, followed by a comma seperated list of one or more parameter_identifiers and an
optional parameter_type.

procedure DoIt (var x, y, z: OneType; a, b: AnotherType; var q);
To understand parameter passing, first some definitions.

actual parameter
the parameter passed in to the routine.

formal parameter
the parameter as used inside the procedure.

by value the value of the actual parameter is copied on to the stack.

by reference
the address of the actual parameter is copied on to the stack.

L-value (left hand of a ‘:=" statement) something that can be assigned to (not a con-
stant, or const or protected variable or other immutable item).

R-value (right hand of a ‘:=" statement) anything you can get the value of (could be a
constant, an expression, a variable (whether const or protected or not) or just
about anything.

addressable
something you can get the address of (not a field of a packed structure or a
variable with ‘attribute (register)’ (GPC extension)).

aliasing accessing memory via two different names (e.g. a global variable passed by
reference to a procedure can be accessed either as the global variable or the
formal paramater). Generally this is very bad practice.

Technical note: Parameters are not always passed on the stack, they may also be passed
in registers, especially on RISC machines.

The prefix defines how a variable is passed on the stack and how you can access the
formal_parameter inside the procedure. The prefix can be one of:

nothing

Chapter 6: The Programmer’s Guide to GPC 67

protected

var

const

procedure DolIt (x: SomeType);

Technical: The actual parameter is passed by value or reference, but if passed
by reference, it is then copied to a local copy on the stack. Aliasing has no
effect on x.

What it means: you can modify ‘x’ inside the routine, but your changes will
not affect the actual parameter (and vice versa). The actual parameter can be
a constant or other immutable object, or a protected or const variable.

procedure DoIt (protected x: SomeType) ;

Technical: The actual parameter is passed by value or reference, but if passed
by reference, it is then copied to a local copy on the stack. Aliasing has no
effect on x. protected is a Extended Pascal extension.

What it means: if you modify the actual parameter, this will not affect ‘x’
inside the routine. The actual parameter can be a constant or other immutable
object, or a protected or const variable. You are forbidden from modifying x
inside the routine.

procedure Dolt (var x: SomeType);

Technical: The actual parameter is passed by reference. Aliasing will definitely
change ‘x’.

What it means: modifications to ‘x’ inside the routine will change the actual
parameter passed in. The actual parameter must be an addressable L-value (ie,
it must be something you can take the address of and assign to).

A parameter of this kind is called variable parameter and internally corresponds
to an L-value pointer (to the specified type identifier if any). This declaration
is necessary if the parameter is to be modified within the routine and to hold
its value still after return.

procedure DoIt (const x: SomeType) ;

Technical: The actual parameter is passed by value or reference. The compiler
will make a copy of the actual parameter to have something it can address if
the actual parameter is not addressable. You are forbidden from modifying
‘x” inside the routine, and therefore you cannot modify the actual parameter.
Aliasing may or may not change ‘x’. const is a Borland Pascal extension.
What it means: You can pass any R-value. You cannot modify ‘x’ inside the
routine. If you change the actual parameter while inside the routine, ‘x’ will
have an undefined value.

protected var

procedure DoIt (protected var x: SomeType) ;

Technical: The actual parameter is passed by reference. The compiler will
never make a copy of the actual parameter. You are forbidden from modifying
‘x’ inside the routine, and therefore you cannot modify the actual parameter.
Aliasing will definitely change ‘x’.

68 The GNU Pascal Manual

What it means: You can pass anything addressable. You cannot modify ‘x’
inside the routine. If you change the actual parameter while inside the routine,
‘x” will change as well.

In GPC, the protected var mode guarantees that the parameter is always
passed by reference, making it the correct choice for calling C routines with
‘const’ pointer parameters.

If you omit the formal parameter type specification, then any type may be passed to
that parameter. Generally this is a bad idea, but occasionally it can be useful, especially
for low level code.

As an Extended Pascal extension, you can also declare procedural parameters directly:
procedure parameter_identifier

or:
function parameter_identifier: parameter_identifier_result_type

Example for parameter lists:
program ParameterDemo;

procedure Foo (var Bar; var Baz: Integer; const Fred: Integer);

procedure Glorkl (function Foo: Integer; procedure Bar (Baz: Integer));f]

begin
Bar (Foo)
end;

begin
Baz := Integer (Bar) + Fred
end;

var
a, b, c: Integer;

begin
Foo (a, b, c)
end.

See also

Section 6.2 [Data Types|, page 77, [var], page 488, [const], page 327, [protected], page 431

6.1.7 Statements

6.1.7.1 Assignment

The way an assignment looks like:
L-value := expression;
This statement assigns any valid expression to L-value. Make sure that the result of
expression is compatible with L-value, otherwise an compilation error is reported. The ‘:=’

Chapter 6: The Programmer’s Guide to GPC 69

is called assignment operator. As long as L-value and expression are type compatible, they
are assignment compatible for any definable type as well.

6.1.7.2 begin end Compound Statement

It looks like that:
begin
statement;
statement;

statement
end
This statement joins several statements together into one compound statement which is

treated as a single statement by the compiler. The finishing semicolon before ‘end’ can be
left out.

6.1.7.3 if Statement

This statement has the following look:
if boolean_expression then
statement
or with an alternative statement:

if boolean_expression then
statement1

else
statement?2

The ‘if’ ... ‘then’ statement consists of a boolean expression and a statement, which
is conditionally executed if the evaluation of boolean_expression yields true.

If “4f” ... ‘then’ ... ‘else’ is concerned, statementl is executed depending on
boolean_expression being true, otherwise statement2 is executed alternatively. Note: the
statement before else must not finish with a semicolon.

6.1.7.4 case Statement

case expression of
selector: statement;

selector: statement;
end
or, with alternative statement sequence:

case ordinal_expression of
selector: statement;

selector: statement;
otherwise { ““else’’ instead of ‘‘otherwise’’ allowed }Hil
statement;

70 The GNU Pascal Manual

statement;
end

or, as part of the invariant record type definition:
type
foo = record
field_declarations
case bar: variant_type of

selector: (field_declarations) ;
selector: (field_declarations) ;

end;
or, without a variant selector field,

type
foo = record
field_declarations
case variant_type of
selector: (field_declarations) ;
selector: (field_declarations) ;

end;

The case statement compares the value of ordinal_expression to each selector, which can
be a constant, a subrange, or a list of them separated by commas, being compatible with
the result of ordinal_expression. Note: duplicate selectors or range crossing is not allowed
unless {$borland-pascal} is specified. In case of equality the corresponding statement is
executed. If otherwise is specified and no appropriate selector matched the expression, the
series of statements following otherwise is executed. As a synonym for otherwise, else
can be used. The semicolon before otherwise is optional.

@@ 7777 The expression must match one of the selectors in order to continue, unless an
alternative statement series is specified.

For case in a variant record type definition, see Section 6.2.11.3 [Record Types|, page 85.
See also

Section 6.1.7.3 [if Statement], page 69

6.1.7.5 for Statement

For ordinal index variables:

for ordinal_variable := initial_.value to final_value do
statement

or

for ordinal_variable := initial_value downto final_value do

statement

For sets:

Chapter 6: The Programmer’s Guide to GPC 71

for set_element_type_variable in some_set do
statement

For pointer index variables:

for pointer_variable := initial_address to final_address do
statement
or
for pointer_variable := initial_ address downto final_address do
statement

The for statement is a control statement where an index variable assumes every value
of a certain range and for every value the index variable assumes statement is executed.
The range can be specified by two bounds (which must be of the same type as the index
variable, i.e. ordinal or pointers) or by a set.

For ordinal index variables:

— 1If ‘to’ is specified, the index counter is increased by one as long as initial_value is less
or equal to final value,

— if ‘downto’ is specified, it is decreased by one as long as initial_value is greater or equal
to final_value.
For pointer index variables:

— If ‘to’ is specified, the index counter is increased by the size of the type the index
variable points to (if it is a typed pointer, otherwise by one if it is typeless) as long as
initial_address is less or equal to final_address,

— if ‘downto’ is specified, it is decreased by a corresponding value as long as initial_address
is greater or equal to final_address.

Since gpc provides a flat memory modell, all addresses are linear, so they can be com-
pared. Still, such loops should be used (if at all) only for iterating through successive
elements of an array.

For sets:

— statement is executed with the index variable (which must be ordinal and of the same
type as the set elements) assuming every element in some_set, however note that a set
is a not-ordered structure.

Please note: A modification of the index variable may result in unpredictable action.

See also

Section 6.2.11.6 [Set Types|, page 90, Section 6.6 [Pointer Arithmetics|, page 99, Sec-
tion 6.1.7.7 [repeat Statement|, page 72, Section 6.1.7.5 [for Statement], page 70

6.1.7.6 while Statement

The while loop has the following form
while boolean_expression do
statement
The while statement declares a loop which is executed while boolean_expression is true.
Since the terminating condition is checked before execution of the loop body, statement
may never be executed.

72 The GNU Pascal Manual

See also

Section 6.1.7.7 [repeat Statement|, page 72, Section 6.1.7.5 [for Statement|, page 70

6.1.7.7 repeat Statement

repeat
statement;

statement;
until boolean_expression

The repeat ... until statement declares a loop which is repeated until
boolean_expression is true. Since the terminating condition is checked after execution of
the loop body, the statement sequence is executed at least once.

See also

Section 6.1.7.6 [while Statement|, page 71, Section 6.1.7.5 [for Statement|, page 70

6.1.7.8 asm Inline

Q@ 7777
asm (StatementList: String);

The asm inline statement is a GNU Pascal extension. It requires its parameter to be
AT&T-noted assembler statements, and therefore it is not compatible with that one of Bor-
land Pascal. statementlist is a string containing asm statements separated by semicolons.

6.1.7.9 with Statement

6.1.7.10 goto Statement

@@ ?77?7? This statement looks like this:
goto label

(Under construction.)

6.1.7.11 Procedure Call

subroutine_name;

This statement calls the subroutine subroutine_name which can either be a procedure
or, if GNU extended syntax is turned on, a function. In this case, the result is ignored.

6.1.7.12 The Declaring Statement

This statement allows to declare a variable within a statement part. It looks like this:

var
var_identifier : type_identifier;

or

Chapter 6: The Programmer’s Guide to GPC 73

var
var_identifier: type_definition;

and with initializing value:

var
var_identifier: type_identifier value expression;

or

var
var_identifier: type_definition value expression;

Unlike in declaration parts, the initializing expression does not have to be a constant
expression. Note that every declaring statement has to start with var. The name space
of the variable extends from its declaration to the end of the current matching statement
sequence (which can be a statement part (of the program, a function, a procedure or an
operator) or, within that part, a begin end compound statement, a repeat loop, or the else
branch of a case statement). This statement is a GNU Pascal extension.

See also

Section 6.2.1 [Type Definition|, page 77, Section 6.2 [Data Types|, page 77

6.1.7.13 Loop Control Statements

These are
Continue;
and
Break;

These simple statements must not occur outside a loop, i.e. a ‘for’, ‘while’ or ‘repeat’
statement. ‘Continue’ transfers control to the beginning of the loop right by its call, ‘Break’
exits the current loop turn and continues loop execution.

6.1.8 Import Part and Module/Unit Concept

6.1.8.1 The Source Structure of ISO 10206 Extended Pascal
Modules

@@ Description missing here

A module can have one or more ‘export’ clauses and the name of an ‘export’ clause
doesn’t have to be equal to the name of the module.

Sample module code with separate interface and implementation parts:

module DemoModule interface; { interface part }

export DemoModule = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

74

The GNU Pascal Manual

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end.
module DemoModule implementation; { implementation part }

import
StandardInput;
StandardOutput;

var
Foo: FooType;

{ Note: the effect is the same as a ‘forward’ directive would have:
parameter lists and result types are not allowed in the
declaration of exported routines, according to EP. In GPC, they
are allowed, but not required. }

procedure SetFoo;

begin
Foo := f

end;

function GetFoo;
begin

GetFoo := Foo
end;

to begin do
begin
Foo := 59;
WriteLn (’Just an example of a module initializer. See comment below’)]]
end;

to end do
begin
Foo := 0;
WriteLn (’Goodbye’)
end;

end.
Alternatively the module interface and implementation may be combined as follows:
module DemoMod2; { Alternative method }

export Catch22 = (FooType, SetFoo, GetFoo);

type
FooType = Integer;

Chapter 6: The Programmer’s Guide to GPC 75

procedure SetFoo (f: FooType);
function GetFoo: FooType;

end; { note: this ‘end’ is required here, even if the
module-block below would be empty. }

var
Foo: FooType;

procedure SetFoo;
begin

Foo := f
end;

function GetFoo;
begin

GetFoo := Foo
end;

end.
Either one of the two methods may be used like this:
program ModuleDemo (Output);

import DemoModule;

begin
SetFoo (999);
Writeln (GetFoo);
end.

program ModDemo2 (Output);
import Catch22 in ’demomod2.pas’;

begin
SetFoo (999);
Writeln (GetFoo);
end.

Somewhat simpler GPC modules are also supported. Please note: This is not supported
in the Extended Pascal standard.

This is a simpler module support that does not require exports, imports, module headers
etc.

These non-standard simple GPC modules look like the following example. They do
not have an export part, do not have a separate module-block, do not use import/export
features.

Instead, you have to emulate the exporting/importing yourself using ‘attribute’ and
‘external name’.

module DemoMod3;

76 The GNU Pascal Manual

type
FooType = Integer;

var
Foo: FooType;

procedure SetFoo (f: FooType); attribute (name = ’SetFoo’);
begin

Foo := f£
end;

function GetFoo: FooType; attribute (name = ’GetFoo’);
begin

GetFoo := Foo;
end;

end.

program ModDemo3 (Output);
{$L demomod3.pas} { explicitly link module }

{ Manually do the "import" from DemoMod3 }

type
FooType = Integer;

procedure SetFoo (f: FooType); external name ’SetFoo’;
function GetFoo: FooType; external name ’GetFoo’;

begin
SetFoo (999);
Writeln (GetFoo)
end.

Module initialization and finalization:

The to begin do module initialization and to end do module finalization constructs now
work on every target.

By the way: The “GPC specific” module definition is almost identical to the PXSC
standard. With an additional keyword ‘global’ which puts a declaration into an export
interface with the name of the module, it will be the same. @@This is planned.

6.1.8.2 The Source Structure of UCSD/Borland Pascal Units

A generic GNU Pascal unit looks like the following:

unit name;
interface

import_part

Chapter 6: The Programmer’s Guide to GPC 7

interface_part
implementation
implementation_part
initialization_part

end.

The name of the unit should coincide with the name of the file with the extension
stripped. (If not, you can tell GPC the file name with ‘uses foo in ’bar.pas’’, see |[uses|,
page 485.)

The import_part is either empty or contains a ‘uses’ clause to import other units. It
may also consist of an ISO-style ‘import’ specification. Note that the implementation part
is not preceeded by a second import part in GPC (see [import]|, page 371).

The interface_part consists of constant, type, and variable declarations, procedure and
function headings which may be freely mixed.

The implementation_part is like the declaration part of a program, but the headers of
procedures and functions may be abbreviated: Parameter lists and function results may be
omitted for procedures and functions already declared in the interface part.

The initialization_part may be missing, or it may be a ‘begin’ followed by one or more
statements, such that the unit has a statement part between this ‘begin’ and the final ‘end’.
Alternatively, a unit may have ISO-style module initializers and finalizers, see [to begin do],
page 476, [to end do|, page 476.

Note that GPC does not yet check whether all interface declarations are resolved in the
same unit. The implementation of procedures and functions which are in fact not used may
be omitted, and/or procedures and functions may be implemented somewhere else, even in
a different language. However, relying on a GPC bug (that will eventually be fixed) is not
a good idea, so this is not recommended. Instead, declare such routines as ‘external’.

A unit exports everything declared in the interface section. The exported interface has
the name of the unit and is compatible with Extended Pascal module interfaces since GPC
uses the same code to handle both.

6.2 Data Types

6.2.1 Type Definition
As described in Section 6.1.4 [Type Declaration|, page 62, a type declaration part looks
like this:

type
type_identifier

type_definition;

type_identifier = type_definition;

78 The GNU Pascal Manual

where the left side is the type declaration and the right one the type definition side. GNU
Pascal offers various possibilities to implement highly specialized and problem-specific data

types.

6.2.2 Ordinal Types

An ordinal type is one that can be mapped to a range of whole numbers. It includes
integer types, character types, enumerated types and subrange types of them.

A character type is represented by the intrinsic type ‘Char’ which can hold elements of
the operating system’s character set (usually ASCII). Conversion between character types
and integer types is possible with the intrinsic functions Ord and Chr.

An enumerated type defines a range of elements which are referred to by identifiers.
Conversion from enumerated types to integer types is possible with the intrinsic function
Ord. Conversion from integer to ordinal types is only possible by type-casting or using the
extended form of ‘Succ’.

var
Foo: Char; { foo can hold a character }
Num: ’0° .. ’9’; { Can hold decimal digits, is a subrange type of Char 1}

Day: (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday); { Can hold weekdays }

See also

[Ord], page 414, [Chr], page 321, Section 6.7 [Type Casts|, page 100

6.2.3 Integer Types

Besides ‘Integer’, GNU Pascal supports a large zoo of integer types. Some of them
you will find in other compilers, too, but most are GNU Pascal extensions, introduced for
particular needs. Many of these types are synonyms for each other. In total, GPC provides
20 built-in integer types, plus seven families you can play with. (Four of these “families”
are signed and unsigned, packed and unpacked subrange types; the others are explained

below.)

See also: Section 6.2.11.1 [Subrange Types|, page 84.

6.2.3.1 The CPU’s Natural Integer Types

For most purposes, you will always use ‘Integer’, a signed integer type which has the
“natural” size of such types for the machine. On most machines GPC runs on, this is a size
of 32 bits, so ‘Integer’ usually has a range of ‘-2147483648..2147483647 (see [Integer|,
page 378).

If you need an unsigned integer type, the “natural” choice is ‘Cardinal’, also called
‘Word’. Like ‘Integer’, it has 32 bits on most machines and thus a range of ‘0. . 4294967295’
(see [Cardinal], page 315, [Word], page 493).

These natural integer types should be your first choice for best performance. For instance
on an [A32 CPU operations with ‘Integer’ usually work faster than operations with shorter
integer types like ‘ShortInt’ or ‘ByteInt’ (see below).

Chapter 6: The Programmer’s Guide to GPC 79

6.2.3.2 The Main Branch of Integer Types

‘Integer’, ‘Cardinal’, and ‘Word’ define the three “main branches” of GPC’s integer
types. You won'’t always be able to deal with the natural size; sometimes something smaller
or longer will be needed. Especially when interfacing with libraries written in other lan-
guages such as C, you will need equivalents for their integer types.

The following variants of integer types (plus one Boolean type) are guaranteed to be
compatible to the respective types of GNU C as listed below (whereas ‘Integer’, ‘Cardinal’
and ‘Word’ themselves are not guaranteed to be compatible to any given C type). The sizes
given, however, are not guaranteed. They are just typical values currently used on some
platforms, but they may be actually shorter or longer on any given platform.

signed unsigned also unsigned GNU C equivalent size in bits
(example)

Bytelnt ByteCard Byte [un] signed char 8
ShortInt ShortCard ShortWord [unsigned] short int 16
CInteger CCardinal CWord [unsigned] int 32
MedInt MedCard MedWord [unsigned] long int 32
LongInt LongCard LongWord [unsigned] long long int 64

— SizeType — size_t 32
PtrDiffType — — ptrdiff_t 32
PtrInt PtrCard PtrWord — 32

— CBoolean — _Bool, bool 8

Since we don’t know whether ‘LongInt’ will always remain the “longest” integer type
available — maybe GNU C will get ‘long long long int’, one day, which we will support as
‘LongLongInt’ — we have added the synonym ‘LongestInt’ for the longest available singed
integer type, and the same holds for ‘LongestCard’ and ‘LongestWord’.

6.2.3.3 Integer Types with Specified Size

In some situations you will need an integer type of a well-defined size. For this purpose,

GNU Pascal provides type attributes (see [attribute], page 303). The type

Integer attribute (Size = 42)
is guaranteed to have a precision of 42 bits. In a realistic context, you will most often give
a power of two as the number of bits, and the machine you will need it on will support
variables of that size. If this is the case, the specified precision will simultaneously be the
amount of storage needed for variables of this type.

In short: If you want to be sure that you have a signed integer with 32 bits width, write
‘Integer attribute (Size = 32)’, not just ‘Integer’ which might be bigger. The same
works with unsigned integer types such as ‘Cardinal’ and ‘Word’ and with Boolean types.

This way, you can’t get a higher precision than that of ‘LongestInt’ or ‘LongestCard’
(see Section 6.2.3.2 [Main Branch Integer Types|, page 79). If you need higher precision,
you can look at the ‘GMP’ unit (see Section 6.15.5 [GMP], page 198) which provides integer
types with arbitrary precision, but their usage is different from normal integer types.

6.2.3.4 Integer Types and Compatibility

If you care about ISO compliance, only use ‘Integer’ and subranges of ‘Integer’.

80 The GNU Pascal Manual

Some of GPC’s non-ISO integer types exist in Borland Pascal, too: ‘Byte’, ‘ShortInt’,
‘Word’, and ‘LongInt’. The sizes of these types, however, are not the same as in Borland
Pascal. Even for ‘Byte’ this is not guaranteed (while probable, though).

When designing GNU Pascal, we thought about compatibility to Borland Pascal. Since
GNU Pascal is (at least) a 32-bit compiler, ‘Integer’ must have (at least) 32 bits. But
what to do with ‘Word’? Same size as ‘Integer’ (like in BP) or 16 bits (like in BP)? We
decided to make ‘Word’ the “natural-sized” unsigned integer type, thus making it (at least)
32 bits wide. Similarly, we decided to give ‘LongInt’ twice the size of ‘Integer’ (like in BP)
rather than making it 32 bits wide (like in BP). So ‘LongInt’ has 64 bits, and ‘ShortInt’
has 16 bits on the TA32 platform.

On the other hand, to increase compatibility to Borland Pascal and Delphi, GPC provides
the alias name ‘Comp’ for ‘LongInt’ (64 bits on IA32) and ‘SmalllInt’ for ‘ShortInt’ (16
bits on IA32). Note that BP treats ‘Comp’ as a “real” type and allows assignments like
‘MyCompVar :=42.0". Since we don’t consider this a feature, GPC does not copy this
behaviour.

6.2.3.5 Summary of Integer Types

Here is a summary of all integer types defined in GPC. The sizes and ranges are only
typical values, valid on some, but not all platforms. Compatibility to GNU C however is
guaranteed.

[Bytelnt], page 314
signed 8-bit integer type, ‘-128..128’,
compatible to ‘signed char’ in GNU C.

[ByteCard], page 313
unsigned 8-bit integer type, ‘0. .255",
compatible to ‘unsigned char’ in GNU C.

[ShortInt], page 459
signed 16-bit integer type, ‘-32768..32767’,
compatible to ‘short int’ in GNU C.

[ShortCard], page 458
unsigned 16-bit integer type, ‘0. .65535,
compatible to ‘unsigned short int’ in GNU C.

[Integer|, page 378
signed 32-bit integer type, ‘-2147483648..2147483647’,
compatible to ‘int’ in GNU C.

[Cardinal], page 315
unsigned 32-bit integer type, ‘0..4294967295,
compatible to ‘unsigned int’ in GNU C.

[MedInt|, page 397

signed 32-bit integer type, ‘-2147483648..2147483647’,
compatible to ‘long int’ in GNU C.

Chapter 6: The Programmer’s Guide to GPC 81

[MedCard], page 396
unsigned 32-bit integer type, ‘0..4294967295,
compatible to ‘unsigned long int’ in GNU C.

[LongInt], page 390
signed 64-bit integer type, ‘-9223372036854775808. .9223372036854775807’,
compatible to ‘long long int’ in GNU C.

[LongCard], page 386
unsigned 64-bit integer type, ‘0..18446744073709551615’,
compatible to ‘unsigned long long int’ in GNU C.

[LongestInt|, page 388
signed 64-bit integer type, ‘-9223372036854775808. .9223372036854775807".

[LongestCard], page 387
unsigned 64-bit integer type, ‘0..18446744073709551615’.

[Comp], page 324
signed 64-bit integer type, ‘-9223372036854775808. .9223372036854775807’.

[Smalllnt], page 464
signed 16-bit integer type, ‘-32768..32767".

[SizeType], page 463
integer type (usually unsigned) to represent the size of objects in memory

[PtrDiff Type], page 432
signed integer type to represent the difference between two positions in memory

[PtrInt], page 432
signed integer type of the same size as a pointer

[PtrCard], page 431
unsigned integer type of the same size as a pointer

To specify the number of bits definitely, use type attributes, |[attribute], page 303.
program IntegerTypesDemo (Output);

var
ByteVar: Byte;
ShortIntVar: ShortlInt;
Foo: MedCard;
Big: LongestInt;

begin
ShortIntVar := 1000;
Big := MaxInt * ShortIntVar;
ByteVar := 127;
Foo := 16#deadbeef
end.

See also: Section 6.2.11.1 [Subrange Types|, page 84.

82 The GNU Pascal Manual

6.2.4 Built-in Real (Floating Point) Types

GPC has three built-in floating point types to represent real numbers. Each of them is
available under two names (for compatibility to other compilers and languages).

For most purposes, you will always use ‘Real’ which is the only one of them that is part
of Standard and Extended Pascal. If memory constraints apply, you might want to choose
‘ShortReal’ for larger arrays. On the other hand, if high precision is needed, you can use
‘LongReal’. When interfacing with libraries written in other languages such as C, you will
need the equivalents for their real types.

Note that not all machines support longer floating point types, so ‘LongReal’ is the same
as ‘Real’ on these machines. Also, some machines may support a longer type, but not do
all arithmetic operations (e.g. the ‘Sin’ function, [Sin|, page 462) in a precision higher than
that of ‘Real’. If you need higher precision, you can look at the ‘GMP’ unit (see Section 6.15.5
(GMP], page 198) which provides rational and real numbers with arbitrary precision, but
their usage is different from normal real types.

The following real types are guaranteed to be compatible to the real types of GNU C.
The sizes given, however, are not guaranteed. They are just typical values used on any
IEEE compatible floating point hardware, but they may be different on some machines.

type name alternative name GNU C equivalent size in bits (typically)
ShortReal Single float 32
Real Double double 64
LongReal Extended long double 80

6.2.5 Strings Types

There are several ways to use strings in GNU Pascal. One of them is the use of the
intrinsic string type ‘String’ which is a predefined schema type. The schema discriminant
of this type holds the maximal length, which is of type Integer, so values up to MaxInt can
be specified. For ‘String’, an assignment is defined. There are many built-in functions and
procedures for comfortable strings handling.

@@ 7777 String procedures and functions.

Another way to use strings is to use arrays of type ‘Char’. For these, an intrinsic
assignment is defined as well. Besides, ‘String’ and ‘Char’ are assignment compatible. The
preferred way, however, is ‘String’ because of the numerous possibilities for string handling.

6.2.6 Character Types

Character types are a special case of ordinal types.

See also

Section 6.2.2 [Ordinal Types], page 78, [Chr], page 321, [Ord], page 414, [Pred], page 428,
[Succ], page 471.

Chapter 6: The Programmer’s Guide to GPC 83

6.2.7 Enumerated Types

type
enum_type_identifier = (identifier, ..., identifier) ;

An enumerated type is a a special case of ordinal types and defines a range of elements
which are referred to by identifiers. Enumerated types are ordered by occurence in the
identifier list. So, they can be used as index types in an array definition, and it is possible
to define subranges of them. Since they are ordered, they can be compared to one another.
The intrinsic function 0rd applied to name_identifier returns the number of occurence in
the identifier list (beginning with zero), Pred and Succ return the predecessor and successor
of name_identifier. ‘Boolean’ is a special case of an enumerated type.

See also

Section 6.2.2 [Ordinal Types|, page 78, Section 6.2.11.2 [Array Types|, page 85, Sec-
tion 6.2.11.1 [Subrange Types], page 84, [Ord], page 414, [Boolean], page 310, [Char],
page 319, [Pred], page 428, [Succ|, page 471.

6.2.8 File Types

Files are used to store data permanently, normally on hard drives or floppies. There are
tree types of files available: text files, typed and untyped files.

Text files are used to store text in them, where typed files are used to store many entries
of the same type in them, e.g. addresses. Text files and typed files are accessible by ‘Read’
and ‘Write’ operations and do not need the parameter ‘BlockSize’ in ‘Reset’ or ‘Rewrite’.
On the other hand, untyped files are used to store any type of information in them but you
need to use ‘BlockWrite’ or ‘BlockRead’ to store or retrieve data out of this file.

var
Fl: Text; { a textfile }
F2: file of Real; { a typed filed used to store real values in it }
F3: File; { an untyped file }

See also

Section 6.10.1 [File Routines], page 108, [Write], page 494, [Read], page 437, [BlockRead],

page 309, [BlockWrite], page 310, [Reset], page 443, [Rewrite|, page 446

6.2.9 Boolean (Intrinsic)

The intrinsic Boolean represents boolean values, i.e. it can only assume true and false
(which are predefined constants). This type corresponds to the enumerated type

type
Boolean = (False, True);

Since it is declared this way, it follows:

Ord (False) =0
Ord (True) =1
False < True

84 The GNU Pascal Manual

There are four intrinsic logical operators. The logical and, or and not. In Borland
Pascal and GNU Pascal, there is a logical “exclusive or” xor.

See also

Section 6.2.7 [Enumerated Types|, page 83, [and]|, page 290, [or], page 413, [not],
page 408, [xor|, page 496

6.2.10 Pointer (Intrinsic)

The intrinsic Pointer Type is a so-called unspecified or typeless pointer (i.e. a pointer
which does not point to any type but holds simply a memory address).

See also

Section 6.2.11.7 [Pointer Types|, page 91, [nil], page 407

6.2.11 Type Definition Possibilities

6.2.11.1 Subrange Types

GNU Pascal supports Standard Pascal’s subrange types:

program SubrangeDemo;
type
MonthInt = 1 .. 12;
Capital = ’A’ .. °Z7;
ControlChar = A .. "Z; { ‘A’ = ‘Chr (1)’ is a BP extension }
begin
end.

Also possible: Subranges of enumerated types:

program EnumSubrangeDemo;
type
{ This is an enumerated type. }
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

{ This is a subrange of ‘Days’. }
Working = Mon .. Fri;

begin
end.
To increase performance, variables of such a type are aligned in a way which makes them

fastest to access by the CPU. As a result, ‘1 .. 12’ occupies 4 bytes of storage on an [A32
CPU.

For the case you want to save storage at the expense of speed, GPC provides a ‘packed’
variant of these as an extension:

Chapter 6: The Programmer’s Guide to GPC 85

program PackedSubrangeDemo;
type
MonthInt = packed 1 .. 12;
begin
end.
A variable of this type occupies the shortest possible (i.e., addressable) space in memory
— one byte on an TA32 compatible CPU.

See also: [packed], page 420.
6.2.11.2 Array Types

type
array_type_identifier = array [index_type] of element_type

or

type
array_type_identifier

array [index_type, ..., index_type]l of element_type

The reserved word array defines an array type. index_type has to be an ordinal type,
subrange type or an enumerated type, where several index types, separated by commas,
are allowed. element_type is an arbitrary type. An element of an array is accessed by
array_type_variable [index_-number]. The upper and lower index bounds can be determined
by the intrinsic functions High and Low.

type
IntArray = array [1 .. 20] of Integer;
Foo = array [(Mo, Tu, We, Th, Fr, Sa, Su)] of Char;
Bar = array [0 .. 9, ’a’ .. ’z’, (Qux, Glorkl, Fred)] of Real;
Bazl = array [1 .. 10] of IntArray;
{ equal (but declared differently): }
Baz2 = array [1 .. 10, 1 .. 20] of Integer;
See also

[High|, page 368, [Low], page 392
6.2.11.3 Record Types

type
record_type_identifier = record
field_identifier: type_definition;

field_identifier : type_definition;
end;

or, with a variant part,

type
record_type_identifier = record
field_identifier: type_definition;

field_identifier : type_definition;

86 The GNU Pascal Manual

case bar: variant_type of
selector: (field_declarations) ;
selector: (field_declarations) ;

end;
or, without a variant selector field,
type
record_type_identifier = record
field_identifier : type_definition;

field_identifier: type_definition;
case variant_type of

selector: (field_declarations) ;

selector: (field_declarations) ;

end;
The reserved word record defines a structure of fields. Records can be ‘packed’ to save
memory usage at the expense of speed.

The reserved word ‘record’ and record types are defined in ISO 7185 Pascal. According
to ISO Pascal, the variant type must be an identifier. GNU Pascal, like UCSD and Borland
Pascal, also allows a subrange here.

A record field is accessed by record_type_variable . field_identifier

See also: [packed], page 420, Section 6.1.7.4 [case Statement], page 69.

6.2.11.4 Variant Records

GPC supports variant records like in EP and BP. The following construction is not
allowed in Extended Pascal, but in BP and GPC:

program BPVariantRecordDemo;

type
PersonRec = record
Age: Integer;
case EyeColor: (Red, Green, Blue, Brown) of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);
end;

begin
end.

In EP, the variant field needs a type identifier, which, of course, also works in GPC:
program EPVariantRecordDemo;

type
EyeColorType = (Red, Green, Blue, Brown);

PersonRec = record

Chapter 6: The Programmer’s Guide to GPC 87

Age: Integer;
case EyeColor: EyeColorType of
Red, Green : (WearsGlasses: Boolean);
Blue, Brown: (LengthOfLashes: Integer);
end;

begin
end.

6.2.11.5 EP’s Schema Types including ‘String’

Schemata are types that depend on one or more variables, called discriminants. They
are an ISO 10206 Extended Pascal feature.

type
RealArray (n: Integer) = array [1 .. n] of Real;
Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;

The type ‘RealArray’ in this example is called a Schema with the discriminant ‘n’.
To declare a variable of such a type, write:

var
Foo: RealArray (42);

The discriminants of every global or local schema variable are initialized at the beginning
of the procedure, function or program where the schema variable is declared.

)

Schema-typed variables “know” about their discriminants. Discriminants can be ac-

cessed just like record fields:

program SchemalDemo;

type

Positivelnteger = 1 .. MaxInt;

RealArray (n: Integer) = array [1 .. n] of Real;

Matrix (n, m: PositiveInteger) = array [1 .. n, 1 .. m] of Integer;
var

Foo: RealArray (42);

begin
Writeln (Foo.n) { yields 42 }
end.

Schemata may be passed as parameters. While types of schema variables must always
have specified discriminants (which may be other variables), formal parameters (by reference
or by value) may be of a schema type without specified discriminant. In this, the actual
parameter may posses any discriminant. The discriminants of the parameters get their
values from the actual parameters.

Also, pointers to schema variables may be declared without a discriminant:

program Schema2Demo;

type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;

88 The GNU Pascal Manual

var
Bar: RealArrayPtr;
begin
end.
When applying ‘New’ to such a pointer, you must specify the intended value of the
discriminant as a parameter:
New (Bar, 137)
As a GNU Pascal extension, the above can also be written as
Bar := New (RealArrayPtr, 137)
The allocated variable behaves like any other schema variable:
program Schema3Demo;
type
RealArray (n: Integer) = array [1 .. n] of Real;
RealArrayPtr = "RealArray;
var

Bar: RealArrayPtr;
i: Integer;

begin
Bar := New (RealArrayPtr, 137);
for i := 1 to Bar™.n do

Bar~[i] := 42
end.
Since the schema variable “knows” its size, pointers to schemata can be disposed just
like other pointers:
Dispose (Bar)
Schemata are not limited to arrays. They can be of any type that normally requires

constant values in its definition, for instance subrange types, or records containing arrays
etc. (Sets do not yet work.)

References to the schema discriminants are allowed, and the with statement is also
allowed, so one can say:

program SchemaWithDemo;

type

RealArray (n: Integer) = array [1 .. n] of Real;
var

MyArray: RealArray (42);
begin

Writeln (MyArray.n); o writes 42 }
with MyArray do
WritelLn (n); { writes 42 }
end.
Finally, here is a somewhat exotic example. Here, a ‘ColoredInteger’ behaves just like
an ordinary integer, but it has an additional property ‘Color’ which can be accessed like a
record field.

program SchemaExoticDemo;

type

Chapter 6: The Programmer’s Guide to GPC 89

ColorType = (Red, Green, Blue);
ColoredInteger (Color: ColorType) = Integer;

var
Foo: ColoredInteger (Green);

begin
Foo := 7;
if Foo.Color = Red then
Inc (Foo, 2)
else
Foo := Foo div 3
end.

An important schema is the predefined ‘String’ schema (according to Extended Pascal).
It has one predefined discriminant identifier Capacity. GPC implements the String schema
as follows:
type
String (Capacity: Cardinal) = record
Length: 0 .. Capacity;
Chars: packed array [1 .. Capacity + 1] of Char
end;

The Capacity field may be directly referenced by the user, the Length field is referenced
by a predefined string function Length (Str) and contains the current string length. Chars
contains the chars in the string. The Chars and Length fields cannot be directly referenced
by a user program.

If a formal value parameter is of type ‘String’ (with or without discriminant), the
actual parameter may be either a String schema, a fixed string (character array), a single
character, a string literal or a string expression. If the actual parameter is a ‘String’
schema, it is copied for the parameter in the usual way. If it is not a schema, a ‘String’
schema is created automatically, the actual parameter is copied to the new variable and the
Capacity field of the new variable is set to the length of the actual parameter.

Actual parameters to ‘var’ parameters of type ‘String’ must be ‘String’ schemata, not
string literals or character arrays.

program StringDemo (Output);

type
SType = String (10);
SPtr = "String;

var
Str : SType;

Str2: String (100000);

Str3: String (20) value ’string expression’;
DStr: “String;

ZStr: SPtr;

Len : Integer value 256;

Ch : Char value ’R’;

90 The GNU Pascal Manual

{ ‘String’ accepts any length of strings }

procedure Foo (z: String);

begin
Writeln (’Capacity: ’, z.Capacity);
Writeln (’Length : ’, Length (2));
WriteLn (’Contents: ’, z);

end;

{ Another way to use dynamic strings }
procedure Bar (SLen: Integer);
var
LString: String (SLen);
FooStr: type of LString;
begin
LString := ’Hello world!’;
Foo (LString);

FooStr := ’How are you?’;
Foo (FooStr);
end;
begin
Str := ’KUKKUU’;
Str2 := ’A longer string variable’;
New (DStr, 1000); { Select the string Capacity with ‘New’ }
DStr~ := ’The maximum length of this is 1000 chars’;
New (ZStr, Len);
ZStr~ := ’This should fit here’;
Foo (Str);
Foo (Str2);

Foo (’This is a constant string’);
Foo (’This is a ’ + Str3);
Foo (Ch); { A char parameter to string routine }
Foo (’’); { An empty string }
Foo (DStr~);
Foo (ZStr~);
Bar (10000);
end.

In the above example, the predefined procedure New was used to select the capacity of
the strings. Procedure Bar also has a string whose size depends of the parameter passed to
it and another string whose type will be the same as the type of the first string, using the
type of construct.

All string and character types are compatible as long as the destination string is long
enough to hold the source in assignments. If the source string is shorter than the destination,
the destination is automatically blank padded if the destination string is not of string schema

type.

6.2.11.6 Set Types

Chapter 6: The Programmer’s Guide to GPC 91

set_type_identifier = set of set_element_type;

set_type_identifier is a set of elements from set_element_type which is either an ordi-
nal type, an enumerated type or a subrange type. Set element representatives are joined
together into a set by brackets:

[set_element, ..., set_element]

‘[1’ indicates the empty set, which is compatible with all set types. Note: Borland Pascal
restricts the maximal set size (i.e. the range of the set element type) to 256, GNU Pascal has
no such restriction. The number of elements a set variable is holding can be determined by
the intrinsic set function Card (which is a GNU Pascal extension, in Extended Pascal and
Borland Pascal you can use SizeOf instead but note the element type size in bytes, then)
to the set. There are four intrinsic binary set operations: the union ‘+’, the intersection ‘*’
and the difference ‘-’. The symmetric difference ‘><’ is an Extended Pascal extension.

See also

[Card], page 315, [SizeOf], page 463

6.2.11.7 Pointer Types

pointer_type_identifier = ~type_identifier;

A pointer of the type pointer_type_identifier holds the address at which data of the
type type_identifier is situated. Unlike other identifier declarations, where all identifiers in
definition part have to be declared before, in a pointer type declaration type_identifier
may be declared after pointer_type_identifier. The data pointed to is accessed by
‘pointer_type_variable™’. To mark an unassigned pointer, the ‘nil’ constant (which stands
for “not in list”) has to be assigned to it, which is compatible with all pointer types.

type
ItselfFoo = "ItselfFoo; { possible but mostly senseless }
PInt = “Integer; { Pointer to an Integer }
PNode = “TNode; { Linked 1list }
TNode = record
Key : Integer;
NextNode: PNode;
end;
var

Foo, Bar: PInt;

begin
Foo := Bar; { Modify address which foo is holding }
Foo™ := 5; { Access data foo is pointing to }

end.

GPC also suports pointers to procedures or function and calls through them. This is a
non-standard feature.

92 The GNU Pascal Manual

program ProcPtrDemo (Output);

type
ProcPtr = “procedure (i: Integer);

var
PVar: ProcPtr;

procedure WriteInt (i: Integer);
begin

Writeln (’Integer: ’, i : 1)
end;

begin
{ Let PVar point to function WriteInt }
PVar := Q@Writelnt;

{ Call the function by dereferencing the function pointer }
PVar~ (12345)
end.

See also: Section 6.2.10 [Pointer (Intrinsic)], page 84.

6.2.11.8 Procedural and Functional Types

For procedures without a parameter list:
procedure_type_identifier = procedure name_identifier;
or functions:
function_type_identifier =
function name_identifier: function_result_type;
For procedures with a parameter list:
procedure_type_identifier =
procedure name_identifier (parameter_list) ;
or functions:

function_type_identifier =
function name_identifier (parameter_list): function_result_type;

Procedural types can be used as procedures or functions respectively, but also a value can
be assigned to them. Procedural types are a Borland Pascal extension. In Borland Pascal,
function_result_type can only be one of these types: ordinal types, real types, pointer types,
the intrinsic ‘String’ type. In GNU Pascal every function result type for procedural types
is allowed.

BP has procedural and functional types:
type
CompareFunction = function (Keyl, Key2: String): Integer;

function Sort (Compare: CompareFunction);
begin

Chapter 6: The Programmer’s Guide to GPC 93

end;
Standard Pascal has procedural and functional parameters:

function Sort (function Compare (Keyl, Key2: String): Integer);
begin

end;
Both ways have pros and cons, e.g. in BP you can save, compare, trade, etc. procedural
values, or build arrays of them, while the SP way does not require a type declaration and

prevents problems with uninitialized or invalid pointers (which in BP will usually crash the
program).

GPC supports both ways. An important feature of Standard Pascal (but not BP) that
GPC also supports is the possibility to pass local routines as procedural or functional
parameters, even if the called routine is declared far remote. The called routine can then
call the passed local routine and it will have access to the original caller’s local variables.

program LocalProceduralParameterDemo;

procedure CallProcedure (procedure Proc);
begin

Proc
end;

procedure MainProcedure;
var LocalVariable: Integer;

procedure LocalProcedure;
begin

WriteLn (LocalVariable)
end;

begin
LocalVariable := 42;
CallProcedure (LocalProcedure)
end;

begin
MainProcedure
end.

See also: Section 6.1.6.1 [The Procedure|, page 65, Section 6.1.6.2 [The Function],
page 65, Section 6.1.6.4 [Subroutine Parameter List Declaration], page 66, Section 6.1.7.11
[Procedure Call], page 72.

6.2.11.9 Object Types

Object types are used to encapsulate data and methods. Furthermore, they implement
a mechanism for inheritance.

94 The GNU Pascal Manual

See also

Section 6.8 [OOP], page 102
6.2.11.10 Initial values to type denoters

A type may be initialized to a value of expression when it is declared, like a variable, as
in:

program TypeVarInitDemo;

type
Int10 = Integer value 10;
FooType = Real;

MyType = Char value Pred (’A’);
EType (a, b, ¢, d, e, £, g) value d;

const
Answer = 42;

var
ii : Int10; { Value of ii set to 10 }
ch : MyType value Pred (’°z’);
aa : Integer value Answer + 10;
foo: FooType value Sqr (Answer);

el : EType; { value set to 4 %}
e2 : EType value g; { value set to g }
begin
end.

Extended Pascal requires the type initializers to be constant expressions. GPC allows
any valid expression.

Note, however, that the expressions that affect the size of storage allocated for objects
(e.g. the length of arrays) may contain variables only inside functions or procedures.

GPC evaluates the initial values used for the type when an identifier is declared for that
type. If a variable is declared with a type-denoter that uses a type-name which already has
an initial value the latter initialization has precedence.

@@ GPC does not know how to calculate constant values for math functions in the
runtime library at compile time, e.g. ‘Exp (Sin (2.4567))’, so you should not use these
kind of expressions in object size expressions. (Extended Pascal allows this.)

6.2.11.11 Restricted Types

GPC supports ‘restricted’ types, defined in Extended Pascal. A value of a restricted
type may be passed as a value parameter to a formal parameter possessing its underlying
type, or returned as the result of a function. A variable of a restricted type may be passed
as a variable parameter to a formal parameter possessing the same type or its underlying
type. No other operations, such as accessing a component of a restricted type value or
performing arithmetic, are possible.

program RestrictedDemo;

Chapter 6: The Programmer’s Guide to GPC 95

type
UnrestrictedRecord = record
a: Integer;
end;
RestrictedRecord = restricted UnrestrictedRecord;

var
rl: UnrestrictedRecord;
r2: RestrictedRecord;
i: restricted Integer;
k: Integer;

function AccessRestricted (p: UnrestrictedRecord): RestrictedRecord;
var URes: UnrestrictedRecord;
begin
{ The parameter is treated as unrestricted, even though the actual
parameter may be restricted }
URes.a := p.a;
{ It is allowed to assign a function result }

AccessRestricted := URes;
end;
begin

rl.a := 354;

{ Assigning a restricted function result to a restricted variable }
r2 := AccessRestricted (rl);

{ Passing a restricted value to unrestricted formal parameter is ok }
r2 := AccessRestricted (r2);

{$ifdef BUG}
{ **x The following statements are not allowed **x }

k := r2.a; { field access (reading) }

r2.a := 100; { field access (writing) 7

rl := r2; { assignment source is restricted }

r2 :=ri; { assignment target is restricted }

rl := AccessRestricted (r2); { assigning a restricted function

result to an unrestricted object }

i := 16#ffff; { assignment target is restricted }
k =1+ 2; { arithmetic with restricted value }
{$endif}

end.

6.2.12 Machine-dependencies in Types

96 The GNU Pascal Manual

6.2.12.1 Endianness

Endianness means the order in which the bytes of a value larger than one byte are stored
in memory. This affects, e.g., integer values and pointers while, e.g., arrays of single-byte
characters are not affected. The GPC ‘String’ schema, however, contains ‘Capacity’ and
‘Length’ fields before the character array. These fields are integer values larger than one
byte, so the ‘String’ schema is affected by endianness.

Endianness depends on the hardware, especially the CPU. The most common forms are:
e Little-endian

Little-endian machines store the least significant byte on the lowest memory address
(the word is stored little-end-first).

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a little-endian
machine, the following bytes will occupy the memory positions:

Address Value
$1234 $ef
$1235 $be
$1236 $ad
$1237 $de

Examples for little-endian machines are IA32 and compatible microprocessors and Al-
pha processors.

e Big-endian

Big-endian machines store the most significant byte on the lowest memory address (the
word is stored big-end-first).

E.g., if the 32 bit value $deadbeef is stored on memory address $1234 on a big-endian
machine, the following bytes will occupy the memory positions:

Address Value
$1234 $de
$1235 $ad
$1236 $be
$1237 $ef

Examples for big-endian machines are the Sparc and Motorola m68k CPU families and
most RISC processors. Big-endian byte order is also used in the Internet protocols.

Note: There are processors which can run in both little-endian and big-endian mode,
e.g. the MIPS processors. A single program, however, (unless it uses special machine code
instructions) will always run in one endianness.

Under normal circumstances, programs do not need to worry about endianness, the CPU
handles it by itself. Endianness becomes important when exchanging data between different
machines, e.g. via binary files or over a network. To avoid problems, one has to choose the
endianness to use for the data exchange. E.g., the Internet uses big-endian data, and most
known data formats have a specified endianness (usually that of the CPU on which the
format was originally created). If you define your own binary data format, you're free to
choose the endianness to use.

To deal with endianness, GPC predefines the symbol ‘__BYTES_LITTLE_ENDIAN__’ on
little-endian machines and ‘__BYTES_BIG_ENDIAN__’ on big-endian machines. Besides, the

Chapter 6: The Programmer’s Guide to GPC 97

Run Time System defines the constant ‘BytesBigEndian’ as False on little-endian machines
and True on big-endian machines.

There are also the symbols ‘__BITS_LITTLE_ENDIAN__’, ‘__BITS_BIG_ENDIAN__’

-

‘__WORDS_LITTLE_ENDIAN__’, ‘__WORDS_BIG_ENDIAN__’ and the constants
‘BitsBigEndian’ and ‘WordsBigEndian’ which concern the order of bits within a byte
(e.g., in packed records) or of words within multiword-numbers, but these are usually less

important.

The Run Time System also contains a number of routines to convert endianness and to
read or write data from/to binary files in a given endianness, independent of the CPU’s
endianness. These routines are described in the RTS reference (see Section 6.14 [Run Time
System]|, page 122), under ‘endianness’. The demo program ‘endiandemo.pas’ contains
an example on how to use these routines.

6.2.12.2 Alignment

(Under construction.) @@ 7777

6.3 Operators

GNU Pascal supports all operators of ISO Pascal and Borland Pascal. In addition, you
can define your own operators according to the Pascal-SC (PXSC) syntax.

6.3.1 Built-in Operators

The following table lists all built-in GNU Pascal operators, ordered by precedence: ‘<’
etc. have the lowest precedence, ‘not’ etc. the highest. As usual, the precedence of operators
can be superseded with parentheses.

In an assignment statement, ‘:="has lower precedence than all operators. (This is rather
obvious from the syntax of assignment statements, and is merely noted for programmers
familiar with C where ‘=’ is an operator.)

< = > in <> >= <=

+ - or +< < +> >

* / div mod and shl shr =xor *< /< *> />
pow k% ><

not @

The Pascal-SC (PXSC) operators ‘+<’, ‘=<7, ‘4>’ ¢=>" <’ /<0 4> and />’ are not
yet implemented into GNU Pascal but may be defined by the user (see below).

6.3.2 User-defined Operators

GNU Pascal allows the (re-)definition of binary operators according to the Pascal-SC
(PXSC) syntax. The following vector addition example illustrates how to do this:

program OperatorDemo;

type
Vector3 = record
X, ¥y, z: Real;

98 The GNU Pascal Manual

end;

var
a, b, c: Vector3d = (1, 2, 3);

operator + (u, v: Vector3) w: Vector3;

begin
W.X = Uu.X + V.X;
W.y = u.y + Vv.y;
W.Z = u.z + Vv.z;
end;
begin
c :=a+b
end.

Between the closing parenthesis of the argument list and the result variable (‘w’ in the
above example), GPC allows an optional equal sign. This is not allowed in PXSC, but it is
consistent with Extended Pascal’s function result variable definitions, where the equal sign
is obligatory (but also optional in GPC).

The argument types needn’t be equal, and the name of the operator may be an identifier
instead of a known symbol. You cannot define new symbols in GPC.

The PXSC operators ‘+>’, ‘+<’ etc. for exact numerical calculations currently are not
implemented in GPC, but you can define them. Also, the other real-type operators do not
meet the requirements of PXSC; a module which fixes that would be a welcome contribution.

6.4 Procedure And Function Parameters

6.4.1 Parameters declared as ‘protected’ or ‘const’

All the following works in GPC:

procedure Foo (protected a, b, c: Integer);
procedure Foo (a, b, c, protected: Integer);
procedure Foo (a, b, protected, c: Integer);
procedure Foo (protected: Integer);

procedure Foo (var protected: Integer);
procedure Foo (protected protected: Integer);

arguments }
arguments }
arguments }
argument }
argument }
argument }

Y
= N

[

Furthermore, GPC supports const, according to BP, which is equivalent to either
protected or protected var, up to the compiler’s discretion.

6.4.2 The Standard way to pass arrays of variable size

@@ (Under construction.)

A feature of Standard Pascal level 1.

Chapter 6: The Programmer’s Guide to GPC 99

6.4.3 BP’s alternative to Conformant Arrays

Borland Pascal “open array” formal parameters are implemented into GPC. Within the
function body, they have integer type index with lower bound 0.

In constrast to conformant arrays (which are not supported by BP), open arrays allow
any ordinal type as the index of the actual parameter (which is useful, e.g., if you want
to be able to pass values of any enumeration type). However, they lose information about
the lower bound (which is a problem, e.g., if you want to return information to the caller

that relates to the actual array index, like the function ‘I0Select’ in the Run Time System
does).

6.5 Accessing parts of strings (and other arrays)

GPC allows the access of parts (“slices”) of strings as defined in Extended Pascal. For
example:

program StringSliceDemo;

const
HelloWorld = ’Hello, world!’;

begin
WriteLn (HelloWorld[8 .. 12]) { yields ‘world’ }
end.

As an extension, it also allows write access to a string slice:
program SliceWriteDemo;

var
s: String (42) = ’Hello, world!’;

begin

s[8 .. 12] := ’folks’;

WriteLn (s) { yields ‘Hello, folks!’ }
end.

As a further extension, GPC allows slice access also to non-string arrays. However, the
usefulness of this feature is rather limited because of Pascal’s strict type checking rules: If
you have, e.g., an ‘array [1 .. 10] of Integer’ and take a slice ‘[1 .. 5]’ of it, it will not
be compatible to another ‘array [1 .. 5] of Integer’ because distinct array types are not
compatible in Pascal, even if they look the same.

However, array slice access can be used in connection with conformant or open array
parameters. See the program ‘arrayslicedemo.pas’ (in the ‘demos’ directory) for an ex-
ample.

6.6 Pointer Arithmetics

GPC allows to increment, decrement, compare, and subtract pointers or to use them in
‘for’ loops just like the C language.

GPC implements the address operator @ (a Borland Pascal extension).

100 The GNU Pascal Manual

program PointerArithmeticDemo;

var
a: array [1 .. 7] of Char;
p, q: “Char;

i: Integer;
{$X+} { We need extended syntax for pointer arithmetic }

begin
for p := @a[1] to @a[7] do

P 1= 0x?;

p := @a[7];
q := @al[3];
while p > q do
begin
P =Y
Dec (p)
end;

@al7];
@al[3];
q - P; { yields 4 }

f 0T
i

en

Incrementing a pointer by one means to increment the address it contains by the size of
the variable it is pointing to. For typeless pointers (‘Pointer’), the address is incremented
by one instead.

Similar things hold when decrementing a pointer.

Subtracting two pointers yields the number of variables pointed to between both pointers,
i.e. the difference of the addresses divided by the size of the variables pointed to. The
pointers must be of the same type.

6.7 Type Casts

In some cases, especially in low-level situations, Pascal’s strong typing can be an obstacle.
To temporarily circumvent this, GPC defines explicit “type casts” in a Borland Pascal
compatible way.

There are two kinds of type casts, value type casts and variable type casts.
Value type casts

To convert a value of one data type into another type, you can use the target type like
the name of a function that is called. The value to be converted can be a variable or an
expression. Both the value’s type and the destination type must be ordinal or pointer types.
The ordinal value (extended to pointers to mean the address) is preserved in the cast.

An example:

program TypeCastDemo;

Chapter 6: The Programmer’s Guide to GPC 101

var
Ch: Char;
i: Integer;

begin
i := Integer (Ch)
end.
Another, more complicated, example:

program TypeCst2Demo;

type
CharPtr = “Char;
CharArray = array [0 .. 99] of Char;
CharArrayPtr = “CharArray;

var
Fool, Foo2: CharPtr;
Bar: CharArrayPtr;

{$X+} { We need extended syntax in order to use ‘‘Succ’’ on a pointer }

begin

Fool := CharPtr (Bar);

Foo2 := CharPtr (Succ (Bar))
end.

However, because of risks involved with type casts, explained below, and because type-
casts are non-standard, you should try to avoid type casts whenever possible — and it should
be possible in most cases. For instance, the first example above could use the built-in
function “Ord” instead of the type cast:

i := 0rd (Ch);

The assignments in the second example could be written in the following way without
any type casts:
Fool := @Bar~[0];
Foo2 := @Bar~[1];
Note: In the case of pointers, a warning is issued if the dereferenced target type requires
a bigger alignment than the dereferenced source type (see Section 6.2.12.2 [Alignment],
page 97).

Variable type casts

It is also possible to temporarily change the type of a variable (more generally, any
“lvalue”, i.e. something whose address can be taken), without converting its contents in
any way. This is called variable type casting.

The syntax is the same as for value type casting. The type-casted variable is still the
same variable (memory location) as the original one, just with a different type. Outside of
the type cast, the variable keeps its original type.

There are some important differences between value and variable type casting:

e Variable type casting only works on lvalues, not on expressions.

102 The GNU Pascal Manual

e The result of a variable type casting is still an lvalue, so it can be used, e.g., on the left
side of an assignment, or as the operand of an address operator, or passed by reference
to a procedure.

e No values are converted in variable type-casting. The contents of the variable, seen as
a raw bit pattern, are just interpreted according to the new type.

e Because bit patterns are just interpreted differently, the source and target type must
have the same size. If this is not the case, GPC will give a warning.

e Beware: Variable type casts might have unexpected effects on different platforms since
you cannot rely on a specific way the data is stored (e.g. see Section 6.2.12.1 [Endian-
ness|, page 96).

There are cases where a type-cast could be either a value or a variable cast. This is
when both types are ordinal or pointer, and of the same size, and the value is an lvalue.
Fortunately, in those cases, the results of both forms are the same, since the same ordinal
values (or pointer addresses) are represented by the same bit patterns (when of the same
size). Therefore, it doesn’t matter which form of type-casting is actually used in these cases.

When dealing with objects (see Section 6.8 [OOP], page 102), it is sometimes necessary
to cast a polymorphic pointer to an object into a pointer to a more specialized (derived)
object (after checking the actual type). However, the ‘as’ operator is a safer approach, so
type-casts should be used there only for backward-compatibility (e.g., to BP).

See also: [absolute], page 286, Section 6.2.12.2 [Alignment], page 97, Section 6.2.12.1
[Endianness|, page 96, Section 6.8 [OOP]|, page 102, [Ord], page 414, [Chr], page 321,
[Round], page 448, [Trunc|, page 478.

6.8 Object-Oriented Programming

GNU Pascal allows multiple object models. The oldest one follows the object model of
Borland Pascal 7.0. The BP object extensions are almost fully implemented into GPC. This
includes inheritance, virtual and non-virtual methods, constructors, destructors, pointer
compatibility, extended ‘New’ syntax (with constructor call and/or as a Boolean function),
extended ‘Dispose’ syntax (with destructor call).

The Borland object model is different from the ISO draft, but now we have also partial
support of ISO draft (plus the Borland Delphi Object Extensions which are quite similar
to the ISO draft). Moreover most of traditional Mac Pascal object model is covered.

The syntax for an object type declaration is as follows:

program ObjectDemo;

type
Str100 = String (100);

FooParentPtr = “FooParent;
FooPtr = “Foo;

FooParent = object
constructor Init;
destructor Done; virtual;

Chapter 6: The Programmer’s Guide to GPC 103

procedure Bar (c: Real); virtual;
function Baz (b, a, z: Char) = s: Str100; { not virtual }
end;

Foo = object (FooParent)
x, y: Integer;
constructor Init (a, b: Integer);
destructor Done; virtual;
procedure Bar (c: Real); virtual; { overrides ‘FooParent.Bar’ }
z: Real; { GPC extension: data fields after methods }
function Baz: Boolean; { new function }
end;

constructor FooParent.Init;
begin

WriteLn (’FooParent.Init’)
end;

destructor FooParent.Done;
begin

Writeln (°I’’m also done.’)
end;

procedure FooParent.Bar (c: Real);
begin

Writeln (’FooParent.Bar (°, c, ’)’)
end;

function FooParent.Baz (b, a, z: Char) = s: Str100;
begin

WriteStr (s, ’FooParent.Baz (°, b, ’, >, a, ’, 7, z, ’)’)
end;

constructor Foo.Init (a, b: Integer);

begin
inherited Init;
X = a;
y := b;
z = 3.4;
FooParent.Bar (1.7)
end;

destructor Foo.Done;
begin
WriteLn (°’I’’m done.’);
inherited Done
end;

procedure Foo.Bar (c: Real);

104 The GNU Pascal Manual

begin
Writeln (’Foo.Bar (°, c, ’)?)
end;

function Foo.Baz: Boolean;
begin

Baz := True
end;

var
Ptr: FooParentPtr;

begin
Ptr := New (FooPtr, Init (2, 3));
Ptr~.Bar (3);

Dispose (Ptr, Done);
New (Ptr, Init);
with Ptr~ do
Writeln (Baz (’b’, ’a’, ’z’))
end.
Remarks:
e The ordering of data fields and methods can be mixed.

e GPC supports the ‘public’ and ‘private’ declarations like BP, and in addition also
‘protected’ (scope limited to the current type and its descendants).

e Constructors and destructors are ordinary functions, internally. When a constructor
is called, GPC creates some inline code to initialize the object; destructors do nothing
special.

A pointer to ‘FooParent’ may be assigned the address of a ‘Foo’ object. A ‘FooParent’
formal ‘var’ parameter may get a ‘Foo’ object as the actual parameter. In such cases, a call
to a ‘virtual’ method calls the child’s method, whereas a call to a non-‘virtual’ method
selects the parent’s one:

var
MyFooParent: FooParentPtr;
SomeFoo: Foo;

[...]

SomeFoo.Init (4, 2);
MyFooParent := Q@SomeFoo;
MyFooParent”.bar (3.14); { calls ‘foo.bar’ }
MyFooParent”.baz (°b’, ’a’, ’z’); { calls ‘fooParent.baz’ }
if SomeFoo.baz then { calls ‘foo.baz’ }
WritelLn (’Baz!’);
In a method, an overwritten method of a parent object can be called either prefixing it
with the parent type name, or using the keyword ‘inherited’:
procedure Foo.Bar (c: Real);
begin

Chapter 6: The Programmer’s Guide to GPC 105

Z = C;
inherited bar (z) { or: FooParent.Bar (z) }
end;

Use ‘FooParent.bar (z)’if you want to be sure that this method is called, even if some-
body decides not to derive ‘foo’ directly from ‘fooParent’ but to have some intermediate
object. If you want to call the method ‘bar’ of the immediate parent — whether it be
‘fooParent’ or whatever — use ‘inherited bar (z)’.

To allocate an object on the heap, use ‘New’ in one of the following manners:

var
MyFoo: FooPtr;

[...]
New (MyFoo, Init (4, 2));

MyFooParent := New (FooPtr, Init (4, 2))

The second possibility has the advantage that ‘MyFoo’ needn’t be a ‘FooPtr’ but can
also be a ‘FooParentPtr’, i.e. a pointer to an ancestor of ‘foo’.

Destructors can and should be called within Dispose:

Dispose (MyFooParent, Fini)

6.9 Compiler Directives And The Preprocessor

GPC, like UCSD Pascal and BP, treats comments beginning with a ‘¢’ immediately
following the opening ‘{’ or ‘(*’ as a compiler directive. As in Borland Pascal, {$...}
and (*$...x) are equivalent. When a single character plus a ‘+” or ‘=’ follows, this is also
called a compiler switch. All of these directives are case-insensitive (but some of them have
case-sensitive arguments). Directives are local and can be changed during one compilation

(except include files etc. where this makes no sense).

In general, compiler directives are compiler-dependent. (E.g., only the include directive
{$I FileName} is common to UCSD and BP.) Because of BP’s popularity, GPC supports
all of BP’s compiler directives (and ignores those that are unnecessary on its platforms —
these are those not listed below), but it knows a lot more directives.

Some BP directives are — of course not by chance — just an alternative notation for C
preprocessor directives. But there are differences: BP’s conditional definitions (‘{$define
Foo}’) go into another name space than the program’s definitions. Therefore you can define
conditionals and check them via {$ifdef Fool}, but the program will not see them as an
identifier ‘Foo’, so macros do not exist in Borland Pascal.

GPC does support macros, but disables this feature when the ‘-—no-macros’ option or
the dialect option ‘--borland-pascal’ or ‘--delphi’ is given, to mimic BP’s behaviour.
Therefore, the following program will react differently when compiled with GPC either
without special options or with, e.g., the ‘~-borland-pascal’ option (and in the latter
case, it behaves the same as when compiled with BP).

3

program MacroDemo;

106 The GNU Pascal Manual

const Foo = ’Borland Pascal’;
{$define Foo ’Default’}

begin
Writeln (Foo)
end.
Of course, you should not rely on such constructs in your programs. To test if the
program is compiled with GPC, you can test the ‘__GPC__’ conditional, and to test the
dialect used in GPC, you can test the dialect, e.g., with ‘{$ifopt borland-pascall}’.

In general, almost every GPC specific command line option (see Section 5.1 [GPC Com-
mand Line Options|, page 43) can be turned into a compiler directive (exceptions are those
options that contain directory names, such as ‘~-unit-path’, because they refer to the
installation on a particular system, and therefore should be set system-wide, rather than in
a source file):

--foo {$foo}
--no-foo {$no-foo}
-Wbar {$W bar} { note the space after the ‘W’ }

-Wno-bar {$W no-bar}

The following table lists some such examples as well as all those directives that do not
correspond to command-line options or have syntactical alternatives (for convenience and /or
BP compatibility).

--[no-]short-circuit $B+ $B- like in Borland Pascal:
$B- means short-circuit Boolean
operators; $B+ complete evaluation

—-—[no-Jio-checking $I+ $I- like in Borland Pascal:
enable/disable I/0 checking

--[no-Jrange-checking $R+ $R- like in Borland Pascal:
enable/disable range checking

--[no-]stack-checking $S+ $S- like in Borland Pascal:
enable/disable stack checking

-—[no-Jtyped-address $T+ $T- like in Borland Pascal:
make the result of the address
operator and the Addr function a
typed or untyped pointer

-W[no-Jwarnings $W+ $W- enable/disable warnings. Note: in
‘--borland-pascal’ mode, the
short version is disabled because
$W+/$W- has a different meaning in
Borland Pascal (which can safely be
ignored in GPC), but the long version
is still available.

Chapter 6: The Programmer’s Guide to GPC

--[no-Jextended-syntax $X+ $X- mostly like in Borland Pascal:

--borland-pascal
--extended-pascal

--pascal-sc
etc.
{$M Hello'}

{$define FOO}
or
{$CIDefine FOO}

--cidefine=F00
{$CcSDefine FOO}

-D FOO

or
—--csdefine=F00
or
-—define=F00

{$define loop while True do}

or
{$CIDefine loop ...}

--cidefine="1loop=...
{$CSDefine loop ...}
—--csdefine="loop=...

or
--define="loop=..."

enable/disable extended syntax
(ignore function resuls, operator
definitions, ‘PChar’, pointer
arithmetic, ...)

disable or warn about GPC features
not supported by the standard or
dialect given, do not warn about its
‘‘dangerous’’ features (especially BP).
The dialect can be changed during one
compilation via directives like,
e.g., ‘{$borland-pascall}’.

write message ‘Hello!’ to

standard error during compilation. In
‘--borland-pascal’ mode, it is
ignored it if only numbers follow
(for compatibility to Borland
Pascal’s memory directive)

like in Borland Pascal:

define FOO (for conditional compilation)

(case-insensitively)
the same on the command line
define FOO case-sensitively

the same on the command line

Note: ‘--define’ on the command
line is case-sensitive like in GCC,
but ‘{$define}’ in the source code
is case-insensitive like in BP

define ‘loop’ to be ‘while True do’
as a macro like in C. The name of the
macro is case-insensitive. Note:
Macros are disabled in
‘~-borland-pascal’ mode because BP
doesn’t support macros.

the same on the command line
define a case-sensitive macro

the same on the command line

107

108 The GNU Pascal Manual

{$I FileName} like in Borland Pascal:
include ‘filename.pas’
(the name is converted to lower case)

{$undef FOO} like in Borland Pascal: undefine FOO
{$ifdef FOO} conditional compilation
. (l1ike in Borland Pascal).
{$else} Note: GPC predefines the symbol
o ¢__GPC__’> (with two leading
{$endif} and trailing underscores).
{$include "filename.pas"} include (case-sensitive)
{$include <filename.pas>} the same, but don’t search in the

current directory
...and all the other C preprocessor directives.

You also can use the preprocessor directives in C style, e.g. ‘#include’, but this is dep-
recated because of possible confusion with Borland Pascal style ‘#42’ character constants.
Besides, in the Pascal style, e.g. ‘{$include "foo.bar"}’, there may be more than one
directive in the same line.

6.10 Routines Built-in or in the Run Time System

In this section we describe the routines and other declarations that are built into the
compiler or part of the Run Time System, sorted by topics.

6.10.1 File Routines

Extended Pascal treats files quite differently from Borland Pascal. GPC supports both
forms, even in mixed ways, and provides many extensions.

@@ A lot missing here

e An example of getting the size of a file (though a ‘FileSize’ function is already built-
in).
function FileSize (FileName : String) : LongInt;
var
f: bindable file [0 .. MaxInt] of Char;
b: BindingType;
begin
Unbind (f);
b := Binding (f);
b.Name := FileName;
Bind(f, b);
b := Binding(f);
SeekRead (f, 0);
if Empty (£f) then

Chapter 6: The Programmer’s Guide to GPC 109

FileSize := 0
else
FileSize := LastPosition (f) + 1;
Unbind (f) ;
end;

Prospero’s Extended Pascal has a bug in this case. Replace the MaxInt in the type
definition of f by a sufficiently large integer. GNU Pascal works correct in this case.

e GPC implements lazy text file I/O, i.e. does a Put as soon as possible and a Get as
late as possible. This should avoid most of the problems sometimes considered to be
the most stupid feature of Pascal. When passing a file buffer as parameter the buffer
is validated when the parameter is passed.

e GPC supports direct access files. E.g., declaring a type for a file that contains 100
integers.

program DirectAccessFileDemo;
type

DFile = file [1 .. 100] of Integer;
var

F: DFile;

P, N: 1 .. 100;
begin

Rewrite (F);

P := 42;

N := 17;

SeekWrite (F, P);

Write (F, N)
end.

The following direct access routines may be applied to a direct access file:

SeekRead (F, N); { Open file in inspection mode, seek to record N }
SeekWrite (F, N); { Open file in generation mode, seek to record N }
SeekUpdate (F, N); { Open file in update mode, seek to record N }
Update (F); { Writes F~, position not changed. F~ kept. }
p :=Position (F); { Yield the current record number }
p :=LastPosition (F); { Yield the last record number in file }
If the file is open for inspection or update, Get may be applied. If the file is open for
generation or update, Put may be applied.

e In BP, you can associate file variables with files using the ‘Assign’ procedure which
GPC supports.

program AssignTextDemo;
var
t: Text;
Line: String (4096);
begin
Assign (t, ’mytext.txt’);
Reset (t);
while not EOF (t) do

110 The GNU Pascal Manual

begin
ReadlLn (t, Line);
Writeln (Line)
end
end.

e In Extended Pascal, files are considered entities external to your program. External
entities, which don’t need to be files, need to be bound to a variable your program.
Any variable to which external entities can be bound needs to be declared ‘bindable’.
Extended Pascal has the ‘Bind’ function that binds a variable to an external entity
as well as ‘Unbind’ to undo a binding and the function ‘Binding’ to get the current
binding of a variable.

GPC supports these routines when applied to files. The compiler will reject binding of
other object types.

Only the fields ‘Bound’ and ‘Name’ of the predefined record type ‘BindingType’ are
required by Extended Pascal. Additionally, GPC implements some extensions. For the
full definition of ‘BindingType’, see [BindingTypel|, page 307.
The following is an example of binding:

program BindingDemo (Input, Output, f);

var
f: bindable Text;
b: BindingType;

procedure BindFile (var f: Text);
var
b: BindingType;
begin
Unbind (£);
b := Binding (f);
repeat
Write (’Enter a file name: ’);
Readln (b.Name);
Bind (f, b);
b := Binding (f);
if not b.Bound then
Writeln (’File not bound -- try again.’)
until b.Bound
end;

begin

BindFile (f);

{ Now the file f is bound to an external file. We can use the
implementation defined fields of BindingType to check if the
file exists and is readable, writable or executable. }

b := Binding (f);

Write (°The file ’);

if b.Existing then
Writeln (Cexists.’)

Chapter 6: The Programmer’s Guide to GPC 111

else
Writeln (’does not exist.’);
Write (°It is ?);
if not b.Readable then Write (’not ’);
Write (’readable, ’);
if not b.Writable then Write (’not ’);
Write (Pwritable and ’);
if not b.Executable then Write (’not ’);
WritelLn (’executable.’)
end.

Note that Prospero’s Pascal defaults to creating the file if it does not exists! You need
to use Prospero’s local addition of setting b.Existing to True to work-around this. GPC
does not behave like this.

6.10.2 String Operations

In the following description, s1 and s2 may be arbitrary string expressions, s is a variable
of string type.
WriteStr (s, write-parameter-list)

ReadStr (s1, read-parameter-list)
Write to a string and read from a string. The parameter lists are identical to
‘Write’/‘Read’ from Text files. The semantics is closely modeled after file I/0O.

Index (s1, s2)
If s2 is empty, return 1 else if s1 is empty return 0 else returns the position of
s2 in s1 (an integer).

Length (s1)
Return the length of s1 (an integer from 0 .. s1.Capacity).

Trim (s1) Returns a new string with spaces stripped of the end of s.

SubStr (s1, i)

SubStr (si1, i, j)
Return a new substring of s1 that contains j characters starting from i. If j
is missing, return all the characters starting from 1.

EQ (s1, s2)
NE (s1, s2)
LT (s1, s2)
LE (s1, s2)
GT (s1, s2)
GE (s1, s2)

Lexicographic comparisons of s1 and s2. Returns a boolean result. Strings are
not padded with spaces.

sl =s2

sl <> s2

112 The GNU Pascal Manual

sl <s2
sl <= 82
sl > s2

sl >=s2 Lexicographic comparisons of s1 and s2. Returns a boolean result. The
shorter string is blank padded to length of the longer one, but only in
‘-—extended-pascal’ mode.

GPC supports string catenation with the + operator or the ‘Concat’ function. All string-
types are compatible, so you may catenate any chars, fixed length strings and variable length
strings.

program ConcatDemo (Input, Output);

var
Ch : Char;
Str : String (100);
Str2: String (50);
FStr: packed array [1 .. 20] of Char;

begin
Ch := ’$’;
FStr := ’demo’; { padded with blanks }
Write (’Give me some chars to play with: ’);
Readln (Str);

Str := ’7’ + ’prefix:’ + Str + ’:suffix:’ + FStr + Ch;
Writeln (Concat (’Le’, ’ng’, ’th’), > = >, Length (Str));
WritelLn (Str)

end.

Note: The length of strings in GPC is limited only by the range of ‘Integer’ (at least
32 bits, i.e., 2 GB, on most platforms), or the available memory, whichever is smaller).

When trying to write programs portable to other EP compilers, it is however safe to
assume a limit of about 32 KB. At least Prospero’s Extended Pascal compiler limits strings
to 32760 bytes. DEC Pascal limits strings to 65535 bytes.

6.10.3 Accessing Command Line Arguments

GPC supports access to the command line arguments with the BP compatible ParamStr
and ParamCount functions.

e ParamStr[0] is the program name,
e ParamStr[1] .. ParamStr[ParamCount] are the arguments.

The program below accesses the command line arguments.
program CommandLineArgumentsDemo (Output);

var
Counter: Integer;

begin

Chapter 6: The Programmer’s Guide to GPC 113

Writeln (’This program displays command line arguments one per line.’);ll
for Counter := 0 to ParamCount do
Writeln (’Command line argument #°’, Counter, ’ is ¢’,
ParamStr (Counter), ’’°?)
end.

6.10.4 Memory Management Routines

Besides the standard ‘New’ and ‘Dispose’ routines, GPC also allows BP style dynamic
memory management with GetMem and FreeMem:

GetMem (MyPtr, 1024);
FreeMem (MyPtr, 1024);

One somehow strange feature of Borland is not supported: You cannot free parts of a
variable with FreeMem, while the rest is still used and can be freed later by another FreeMem
call:

program PartialFreeMemDemo;

type
Vector = array [0 .. 1023] of Integer;
VecPtr = “Vector;

var

p, q: VecPtr;

begin
GetMem (p, 1024 * SizeOf (Integer));
q := VecPtr (@p~[512]);

{ ...}
FreeMem (p, 512 * Size0f (Integer));
{ ...}

FreeMem (q, 512 * SizeOf (Integer));
end.

6.10.5 Operations for Integer and Ordinal Types

e Bit manipulations: The BP style bit shift operators shl and shr exist in GPC as well
as bitwise and, or, xor and not for integer values.

2#100101 and (1 shl 5) = 2#100000
GPC also supports and, or, xor and not as procedures:

program BitOperatorProcedureDemo;
var x: Integer;
begin

X =7,

and (x, 14); { sets x to 6 }

114 The GNU Pascal Manual

xor (x, 3); { sets x to 5 }
end.

e Succ, Pred: The standard functions ‘Succ’ and ‘Pred’ exist in GPC and accept a second
parameter.

e Increment, decrement: The BP built-in Procedures Inc and Dec exist in GPC.

program IncDecDemo;
var
i: Integer;
c: Char;
begin
Inc (i);
Dec (i, 7);
Inc (c, 3);
end.

i+1; 37
=1i-7;1%
Succ (c, 3); }

Y
o0 P B
I

e Min, Max: These are a GNU Pascal extension and work for reals as well as for ordinal
types. Mixing reals and integers is okay, the result is real then.

6.10.6 Complex Number Operations

@@ A lot of details missing here
e binary operators +, -, *, / and unary -, +
e exponentiation operators (pow and **)
e functions (Sqr, SqRt, Exp, Ln, Sin, Cos, ArcSin, ArcCos, ArcTan)
e number info with Re, Im and Arg functions

e numbers constructed by Cmplx or Polar

The following sample programs illustrates most of the Complex type operations.

program ComplexOperationsDemo (Output);

var
z1, z2: Complex;
Len, Angle: Real;

begin
z1l := Cmplx (2, 1);
Writeln;
WriteLn (’Complex number z1 is: (°, Re (z1) : 1, ’,’, Im (z1) : 1, ’)’);l
WritelLn;
z2 := Conjugate(zl); { GPC extension }
WriteLn (’Conjugate of zl is: (°, Re (22) : 1, ?,’, Im (22) : 1, ’)?);

Writeln;

Len := Abs (z1);

Angle := Arg (z1);

WriteLn (’The polar representation of zl is: Length=’, Len : 1,
>, Angle=’, Angle : 1);

WritelLn;

z2 := Polar (Len, Angle);

Chapter 6: The Programmer’s Guide to GPC 115

Writeln (’Converting (Length, Angle) back to (x, y) gives: (’°,

Re (z2) : 1, ?,’, Im (z2) : 1, ’)’);
Writeln;
WriteLn (’The following operations operate on the complex number z1’);
WritelLn;

z2 := ArcTan (z1);
Writeln (’ArcTan (z1) = (°, Re (z2), ’, ’, Im (z2), ’)?);

Writeln;

z2 := z1 *x*x 3.141;

WriteLn (’°z1 *x 3.141 =’, Re (z2), ’, ’, Im (22), ’)’);
Writeln;

z2 := Sin (z1);

Writeln (’°Sin (z1) = (°, Re (z2), ’, ’, Im (z2), ’)’);

Writeln (’(Cos, Ln, Exp, SgRt and Sqr exist also.)’);

Writeln;

z2 := zl pow 8;

WriteLn (°z1 pow 8 = (’, Re (z2), ’, 7, Im (22), ’)’);

Writeln;

z2 := zl1 pow (-8);

Writeln (°zl1 pow (-8) = (°, Re (22), ’, ’, Im (22), ’)’);
end.

6.10.7 Set Operations

GPC supports Standard Pascal set operations. In addition it supports the Extended
Pascal set operation symmetric difference (setl >< set2) operation whose result consists
of those elements which are in exactly one of the operannds.

It also has a function that counts the elements in the set: ‘a := Card (setl)’.

In the following description, S1 and S2 are variables of set type, s is of the base type of
the set.

S1 :=352 Assign a set to a set variable.
S1 + 82 Union of sets.

S1-82 Difference between two sets.
S1 % S2 Intersection of two sets.

S1 >< 82 Symmetric difference

S1 =82 Comparison between two sets. Returns boolean result. True if S1 has the same
elements as S2.

81 <> 82 Comparison between two sets. Returns boolean result. True if S1 does not
have the same elements as S2.

S1 <82

S2 > 81 Comparison between two sets. Returns boolean result. True if S1 is a strict
subset of S2.

S1<=82

116 The GNU Pascal Manual

82 >= 81 Comparison between two sets. Returns boolean result. True if S1 is a subset
of (or equal to) S2.

s in S1 Set membership test between an element s and a set. Returns boolean result.
True if s is an element of S1.

The following example demonstrates some set operations. The results of the operations
are given in the comments.

program SetOpDemo;

type
TCharSet = set of Char;

var
S1, S2, S3: TCharSet;
Result: Boolean;

begin
Sl o= [)a)’)b),)C)];
82 := [’¢’, ’d’, ’e’];

S3 := S1 + §2; {s3=Da, b, 'c’, 'd’, ’e’] }
83 := S1 * S2; {83 =1[’¢c"]1%}
S3 := 81 - S2; {83 =1[’a’, ’b’] }

{

S3 := S1 >< S2; 83 = [’a’, ’b’, ’d’, ’e’] }
Sl = [ch’)dJ’ 7e)];

Result := S1 = S2; { False }
Result := S1 < S2; { False }
Result := S1 <= S2; { True }

S1 := [’¢c’, ’d’];
Result := S1 <> S2; { True }

Result := S2 > Si; { True }
Result := S2 >=S1 { True }
end.

6.10.8 Date And Time Routines

procedure GetTimeStamp (var t: TimeStamp) ;

function Date (t: TimeStamp): packed array [1 .. DatelLength] of Char;

function Time (t: TimeStamp): packed array [1 .. TimeLength] of Char;
DateLength and TimeLength are implementation dependent constants.

GetTimeStamp (t) fills the record ‘t’ with values. If they are valid, the Boolean flags
are set to True.

TimeStamp is a predefined type in the Extended Pascal standard. It may be extended in
an implementation, and is indeed extended in GPC. For the full definition of ‘TimeStamp’,
see [TimeStamp], page 474.

Chapter 6: The Programmer’s Guide to GPC 117

6.11 Interfacing with Other Languages

The standardized GNU compiler back-end makes it relatively easy to share libraries
between GNU Pascal and other GNU compilers. On Unix-like platforms (not on Dos-like
platforms), the GNU compiler back-end usually complies to the standards defined for that
system, so communication with other compilers should be easy, too.

In this chapter we discuss how to import libraries written in other languages, and how
to import libraries written in GNU Pascal from other languages. While the examples will
specialize to compatibility to GNU C, generalization is straightforward if you are familiar
with the other language in question.

6.11.1 Importing Libraries from Other Languages

To use a function written in another language, you need to provide an external declara-
tion for it — either in the program, or in the interface part of a unit, or a module.

Let’s say you want to use the following C library from Pascal:
File ‘callc.c’:

#include <unistd.h>
#include "callc.h"

int foo = 1;

void bar (void)
{

sleep (foo);
}

File ‘callc.h’:

/* Actually, we wouldn’t need this header file, and could instead
put these prototypes into callc.c, unless we want to use callc.c
also from other C source files. */

extern int foo;
extern void bar (void);

Then your program can look like this:
program CallCDemo;

{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

var
MyFoo: CInteger; external name ’foo’;

procedure Bar; external name ’bar’;
begin

MyFoo := 42;
Bar

118 The GNU Pascal Manual

end.
Or, if you want to provide a ‘CallCUnit’ unit:
unit CallCUnit;

interface

var
MyFoo: CInteger; external name ’foo’;

procedure Bar; external name ’bar’;
implementation
{$L callc.c} { Or: ‘callc.o’ if you don’t have the source }

end.

program CallCUDemo;
uses CallCUnit;

begin
MyFoo := 42;
Bar

end.

You can either link your program manually with ‘callc.o’ or put a compiler directive
‘{$L callc.o}’ into your program or unit, and then GPC takes care of correct linking.
If you have the source of the C library (you always have it if it is Free Software), you
can even write ‘{$L callc.c}’ in the program (like above). Then GPC will also link with
‘callc.o’, but in addition GPC will run the C compiler whenever ‘callc.c’ has changed
if ‘~—automake’ is given, too.

While it is often convenient, there is no must to give the C function ‘bar’ the name ‘Bar’
in Pascal; you can name it as you like (e.g., the variable ‘MyFoo’ has a C name of ‘foo’ in
the example above).

If you omit the ‘name’, the default is the Pascal identifier, converted to lower-case. So,
in this example, the ‘name’ could be omitted for ‘Bar’, but not for ‘MyFoo’.

It is important that data types of both languages are mapped correctly onto each
other. C’s ‘int’, for instance, translates to GPC’s ‘CInteger’, and C’s ‘unsigned long’ to
‘MedCard’. For a complete list of integer types with their C counterparts, see Section 6.2.3
[Integer Types]|, page 78.

In some cases it can be reasonable to translate a C pointer parameter to a Pascal ‘var’
parameter. Since const parameters in GPC can be passed by value or by reference internally,
possibly depending on the system, ‘const foo *’ parameters to C functions cannot reliably
be declared as ‘const’ in Pascal. However, Extended Pascal’s ‘protected var’ can be used
since this guarantees passing by reference.

Some libraries provide a ‘main’ function and require your program’s “main” to be named
differently. To achive this with GPC, invoke it with an option ‘--gpc-main="GPCmain"’

Chapter 6: The Programmer’s Guide to GPC 119

(where ‘GPCmain’ is an example how you might want to name the program). You can also
write it into your source as a directive ‘{$gpc-main="GPCmain"}’.

6.11.2 Exporting GPC Libraries to Other Languages

The ‘.o’ files produced by GPC are in the same format as those of all other GNU
compilers, so there is no problem in writing libraries for other languages in Pascal. To use
them, you will need to write kind of interface — a header file in C. However there are some
things to take into account, especially if your Pascal unit exports objects:

e By default, GPC capitalizes the first letter (only) of each identifier, so ‘procedure
FooBAR’ must be imported as ‘extern void Foobar ()’ from C.
e If you want to specify the external name explicitly, use ‘attribute’:

procedure FooBAR; attribute (name = ’FooBAR’);
begin

Writeln (’FooBAR’)
end;

This one can be imported from C with ‘extern void FooBar()’.

e Objects are “records” internally. They have an implicit ‘vmt’ field which contains a
pointer to the “virtual method table”. This table is another record of the following

structure:
type
VMT = record
ObjectSize: Ptrint; { Size of object in bytes }
NegObjectSize: PtrInt; { Negated size }
Methods: array [1 .. n] of procedure;
{ Pointers to the virtual methods. The entries are of the
repective procedure or function types. }
end;

You can call a virtual method of an object from C if you explicitly declare this ‘struct’
and explicitly dereference the ‘Fun’ array. The VMT of an object ‘FooBAR’ is an external
(in C sense) variable ‘vmt_Foobar’ internally.

e Methods of objects are named ‘Myobject_Mymethod’ (with exactly two capital letters)
internally.

e If you want to put a program in a library for some reason, and you want to give the
‘main’ program an internal name different from ‘main’, call GPC with the command-line
option ‘--gpc-main="GPCmain"’ (see the previous subsection).

6.12 Notes for Debugging

e The GNU debugger, ‘gdb’, does not yet understand Pascal sets, files or subranges. Now
‘gdb’ allows you to debug these things, even though it does not yet understand some
stabs.

e Forward referencing pointers generate debug info that appears as generic pointers.

e No information of ‘with’ statements is currently given to the debugger.

120 The GNU Pascal Manual

e When debugging, please note that the Initial Letter In Each Identifier Is In Upper Case
And The Rest Are In Lower Case, unless explicitly overriden with ‘name’ (see name],
page 403). This is to reduce name clashes with libc and other possible libraries.

e All visible GPC Run Time System routines have linker names starting with ‘_p_’.

e The linker name of the main program is ‘pascal_main_program’. This is done because
ISO Standard wants to have the program name in a separate name space.

6.13 How to use I18N in own programs

This chapter discusses shortly how to use the Internationalization (I18N) features of
GNU Pascal.

Prerequisite

You need to have gettext installed. Try to compile ‘demos/gettextdemo.pas’.
Furthermore, you should download a tool named ‘pas2po’ from
http://www.gnu-pascal.org/contrib/eike/.

The source

We would like to translate the messages provided with this simple example different
languages (here: German) without touching the source for each language:

program Hellol;

begin

Writeln (’Hello, World!’);

WriteLn (’The answer of the questions is: ’, 42)
end.

Preparing the source

To do so, we must prepare the source to use gettext:

program Hello2;
uses GPC, Intl;
var s: TString;

begin
Discard (BindTextDomain (’hello2’, °’/usr/share/locale/’));
Discard (TextDomain (’hello2’));
Writeln (GetText (’Hello, World!’));
s := FormatString (GetText (’The answer of the questions is %s’), 42);
WritelLn (s)
end.

‘BindTextDomain’ sets the path to find our message catalogs in the system. This path
is system dependent. ‘TextDomain’ tells the program to use this catalog. ‘GetText’ looks

http://www.gnu-pascal.org/contrib/eike/

Chapter 6: The Programmer’s Guide to GPC 121

up the given string in the catalog and returns a translated string within the current locale
settings. ‘FormatString’ replaces some format specifiers with the following argument. ‘%s’
is the first following argument. After this step is done, we do not need to touch the sourcefile
any longer. The output of this program is as follows:

Hello, World!

The answer of the questions is 42

Getting the translatable strings

There are lots of strings in the above example, but only those surrounded with ‘GetText’
should be translated. We use ‘pas2po hello2.pas -o hello2.po’ to extract the messages.
The output is:

This file was created by pas2po with ’hello2.pas’.

Please change this file manually.

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAILQADDRESS>, YEAR.

#

#, fuzzy

msgid nn

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2003-04-27 20:48+0200\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#hello2.pas:10
msgid "Hello, World!"
msgstr ""

#hello2.pas:11
msgid "The answer of the questions is %s"
msgstr ""

Now we translate the message ids into German language, and set some needful informa-
tions at their appropriate places. The following steps must be repeated for each language
we would like to support:

This file was created by pas2po with ’hello2.pas’.
Copyright (C) 2003 Free Software Foundation, Inc.
Eike Lange <eike@g-n-u.de>, 2003.

msgid ""

msgstr ""

"Project-Id-Version: Hello2 1.0\n"
"POT-Creation-Date: 2003-04-27 12:00+0200\n"
"PO-Revision-Date: 2003-04-27 12:06+0200\n"

122 The GNU Pascal Manual

"Last-Translator: Eike Lange <eike@g-n-u.de>\n"
"Language-Team: de <de@li.org>\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=IS0-8859-1\n"
"Content-Transfer-Encoding: 8bit\n"

#hello2.pas:10
msgid "Hello, World!"
msgstr "Hallo, Welt!"

#hello2.pas:11
msgid "The answer of the questions is %s"
msgstr "’%s’ lautet die Antwort auf die Frage."

Please note that we swapped text and numeric arguments and added some single quotes
arround the first argument. We compile the message catalog with ‘msgfmt -vv hello2.po
-0 hello2.mo’ and install the file ‘hello2.mo’ at ‘/usr/share/locale/de/LC_MESSAGES/’
With a german locale setting, the output should be as follows:

Hallo, Welt!
’42° lautet die Antwort auf die Frage.

System dependent notes:

The topmost path where message catalogs reside is system dependent:

for DJGPP:
‘GetEnv (’$DJIDIR’) + ’/share/locale’’

for Mac OS X:

‘/usr/share/locale’ or ‘/sw/share/locale’

for Linux, *BSD:
‘/usr/share/locale’ or ‘/usr/local/share/locale’

See also

(undefined) [Gettext], page (undefined), [FormatString], page 360, Section 6.15.8 [Intl],
page 217.

6.14 Pascal declarations for GPC’s Run Time System

Below is a Pascal source of the declarations in GPC’s Run Time System (RTS). A
file ‘gpc.pas’ with the same contents is included in the GPC distribution in a ‘units’
subdirectory of the directory containing ‘libgcc.a’. (To find out the correct directory for
your installation, type ‘gpc ——print-file-name=units’ on the command line.)

{ This file was generated automatically by make-gpc-pas.
DO NOT CHANGE THIS FILE MANUALLY! }

{ Pascal declarations of the GPC Run Time System that are visible to
each program.

Chapter 6: The Programmer’s Guide to GPC 123

This unit contains Pascal declarations of many RTS routines which
are not built into the compiler and can be called from programs.
Don’t copy the declarations from this unit into your programs, but
rather include this unit with a ‘uses’ statement. The reason is
that the internal declarations, e.g. the linker names, may change,
and this unit will be changed accordingly. @@In the future, this
unit might be included into every program automatically, so there
will be no need for a ‘uses’ statement to make the declarations
here available.

Note about ‘protected var’ parameters:

Since ‘const’ parameters in GPC may be passed by value *or* by
reference internally, possibly depending on the system,

‘const foo *’ parameters to C functions *cannot* reliably be
declared as ‘const’ in Pascal. However, Extended Pascal’s
‘protected var’ can be used since this guarantees passing by
reference.

Copyright (C) 1998-2006 Free Software Foundation, Inc.

Authors: Jukka Virtanen <jtv@hut.fi>
Peter Gerwinski <peter@gerwinski.de>
Frank Heckenbach <frank@pascal.gnu.de>
J.J. v.der Heijden <j.j.vanderheijden@student.utwente.nl>
Nicola Girardi <nicola@g-n-u.de>
Prof. Abimbola A. Olowofoyeku <African_Chief@bigfoot.com>
Emil Jerabek <jerabek@math.cas.cz>
Maurice Lombardi <Maurice.Lombardi@ujf-grenoble.fr>
Toby Ewing <ewing@iastate.edu>
Mirsad Todorovac <mtodorov_69@yahoo.com>

This file is part of GNU Pascal.

GNU Pascal is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.

GNU Pascal is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Pascal; see the file COPYING. If not, write to the
Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

124 The GNU Pascal Manual

As a special exception, if you link this file with files compiled
with a GNU compiler to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public
License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU
General Public License. }

{$gnu-pascal,I-}

{$if __GPC_RELEASE__ <> 20070904}

{$error

Trying to compile gpc.pas with a non-matching GPC version is likely
to cause problems.

In case you are building the RTS separately from GPC, make sure you
install a current GPC version previously. If you are building GPC
now and this message appears, something is wrong -- if you are
overriding the GCC_FOR_TARGET or GPC_FOR_TARGET make variables, this
might be the problem. If you are cross-building GPC, build and
install a current GPC cross-compiler first, sorry. If that’s not the
case, please report it as a bug.

If you are not building GPC or the RTS currently, you might have
installed things in the wrong place, so the compiler and RTS
versions do not match.}

{$endif}

{ Command-line options must not change the layout of RTS types
declared here. }
{$no-pack-struct, maximum-field-alignment O}

module GPC;

export
GPC = all;
GPC_CP = (ERead { @@ not really, but an empty export doesn’t work
s
GPC_EP = (ERead { @@ not really, but an empty export doesn’t work
s
GPC_BP = (MaxLongInt, ExitCode, ErrorAddr, FileMode, Pos);

GPC_Delphi = (MaxLongInt, Int64, InitProc, EConvertError,
ExitCode, ErrorAddr, FileMode, Pos, SetString,
StringOfChar,
TextFile, AssignFile, CloseFile);

type
GPC_FDR = AnyFile;

{ Pascal declarations of the GPC Run Time System routines that are
implemented in C, from rtsc.pas }

Chapter 6: The Programmer’s Guide to GPC 125

const
{ Maximum size of a variable }
MaxVarSize = MaxInt div 8;

{ If set, characters >= #$80 are assumed to be letters even if the
locale routines don’t say so. This is a kludge because some
systems don’t have correct non-English locale tables. }

var
FakeHighLetters: Boolean; attribute (name = ’_p_FakeHighLetters’);
external;

type
PCStrings "TCStrings;
TCStrings = array [0 .. MaxVarSize div SizeOf (CString) - 1] of
CString;

Int64 = Integer attribute (Size = 64);

UnixTimeType = LongInt; { This is hard-coded in the compiler. Do
not change here. }

MicroSecondTimeType = LonglInt;

FileSizeType = Longlnt;

SignedSizeType = Integer attribute (Size = BitSizeOf (SizeType));
TSignalHandler = procedure (Signal: ClInteger);

StatFSBuffer = record
BlockSize, BlocksTotal, BlocksFree: Longlnt;
FilesTotal, FilesFree: CInteger

end;

InternalSelectType = record
Handle: Clnteger;
Read, Write, Exception: Boolean
end;

PString = ~“String;

{ ‘Max’ so the range of the array does not become invalid for
Count = 0 }

PPStrings = "TPStrings;

TPStrings (Count: Cardinal) = array [1 .. Max (Count, 1)] of

PString;

GlobBuffer = record
Result: PPStrings;
Internall: Pointer;
Internal2: PCStrings;
Internal3: CInteger

end;

126 The GNU Pascal Manual

{ Mathematical routines }

function SinH (x: Real): Real; attribute (const); external
name ’_p_SinH’;

function CosH (x: Real): Real; attribute (const); external
name ’_p_CosH’;

function ArcTan2 (y: Real; x: Real): Real; attribute (const);
external name ’_p_ArcTan2’;

function IsInfinity (x: LongReal): Boolean; attribute (const);
external name ’_p_IsInfinity’;

function IsNotANumber (x: LongReal): Boolean; attribute (const);
external name ’_p_IsNotANumber’;

procedure SplitReal (x: LongReal; var Exponent: CInteger; var
Mantissa: LongReal); external name ’_p_SplitReal’;

{ Character routines }

{ Convert a character to lower case, according to the current
locale. }

function LoCase (ch: Char): Char; attribute (const); external
name ’_p_LoCase’;

function IsUpCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsUpCase’;

function IsLoCase (ch: Char): Boolean; attribute (const); external
name ’_p_IsLoCase’;

function IsAlpha (ch: Char): Boolean; attribute (const); external
name ’_p_IsAlpha’;

function IsAlphaNum (ch: Char): Boolean; attribute (const);
external name ’_p_IsAlphalNum’;

function IsAlphaNumUnderscore (ch: Char): Boolean; attribute
(const); external name ’_p_IsAlphaNumUnderscore’;

function IsSpace (ch: Char): Boolean; attribute (const); external
name ’_p_IsSpace’;

function IsPrintable (ch: Char): Boolean; attribute (const);
external name ’_p_IsPrintable’;

{ Time routines }

{ Sleep for a given number of seconds. }
procedure Sleep (Seconds: CInteger); external name ’_p_Sleep’;

{ Sleep for a given number of microseconds. }
procedure SleepMicroSeconds (MicroSeconds: CInteger); external
name ’_p_SleepMicroSeconds’;

{ Set an alarm timer. }
function Alarm (Seconds: CInteger): CInteger; external
name ’_p_Alarm’;

Chapter 6: The Programmer’s Guide to GPC 127

{ Convert a Unix time value to broken-down local time.
A1l parameters except Time may be Null. 7

procedure UnixTimeToTime (Time: UnixTimeType; var Year: CInteger;
var Month: CInteger; var Day: Clnteger; var Hour: Clnteger; var
Minute: CInteger; var Second: Clnteger;

var TimeZone: CInteger; var DST:

Boolean; var TZNamel: CString; var TZName2: CString); external
name ’_p_UnixTimeToTime’;

{ Convert broken-down local time to a Unix time value. }

function TimeToUnixTime (Year: CInteger; Month: CInteger; Day:
CInteger; Hour: CInteger; Minute: CInteger; Second: CInteger):
UnixTimeType; external name ’_p_TimeToUnixTime’;

{ Get the real time. MicroSecond can be Null and is ignored then. }
function GetUnixTime (var MicroSecond: CInteger): UnixTimeType;
external name ’_p_GetUnixTime’;

{ Get the CPU time used. MicroSecond can be Null and is ignored
then. }

function GetCPUTime (var MicroSecond: CInteger): CInteger; external
name ’_p_GetCPUTime’;

{ Signal and process routines }

{ Extract information from the status returned by PWait }

function StatusExited (Status: CInteger): Boolean; attribute
(const); external name ’_p_StatusExited’;

function StatusExitCode (Status: CInteger): CInteger; attribute
(const); external name ’_p_StatusExitCode’;

function StatusSignaled (Status: CInteger): Boolean; attribute
(const); external name ’_p_StatusSignaled’;

function StatusTermSignal (Status: CInteger): CInteger; attribute
(const); external name ’_p_StatusTermSignal’;

function StatusStopped (Status: CInteger): Boolean; attribute
(const); external name ’_p_StatusStopped’;

function StatusStopSignal (Status: CInteger): ClInteger; attribute
(const); external name ’_p_StatusStopSignal’;

{ Install a signal handler and optionally return the previous
handler. 0ldHandler and 0ldRestart may be Null. }

function InstallSignalHandler (Signal: CInteger; Handler:
TSignalHandler; Restart: Boolean; UnlessIgnored: Boolean;
var 0ldHandler: TSignalHandler; var OldRestart: Boolean): Boolean;
external name ’_p_InstallSignalHandler’;

{ Block or unblock a signal. }
procedure BlockSignal (Signal: CInteger; Block: Boolean); external

128

The GNU Pascal Manual

name ’_p_BlockSignal’;

{ Test whether a signal is blocked. }
function SignalBlocked (Signal: CInteger): Boolean; external
name ’_p_SignalBlocked’;

{ Sends a signal to a process. Returns True if successful. If Signal
is 0, it doesn’t send a signal, but still checks whether it would
be possible to send a signal to the given process. }

function Kill (PID: CInteger; Signal: CInteger): Boolean; external
name ’_p_Kill’;

{ Constant for WaitPID %}
const
AnyChild = -1;

{ Waits for a child process with the given PID (or any child process
if PID = AnyChild) to terminate or be stopped. Returns the PID of
the process. WStatus will contain the status and can be evaluated
with StatusExited etc.. If nothing happened, and Block is False,
the function will return O, and WStatus will be 0. If an error
occurred (especially on single tasking systems where WaitPID is
not possible), the function will return a negative value, and
WStatus will be 0. }

function WaitPID (PID: CInteger; var WStatus: CInteger; Block:
Boolean): ClInteger; external name ’_p_WaitPID’;

{ Returns the process ID. }
function ProcessID: CInteger; external name ’_p_ProcessID’;

{ Returns the process group. }
function ProcessGroup: CInteger; external name ’_p_ProcessGroup’;

{ Returns the real or effective user ID of the process. }
function UserID (Effective: Boolean): CInteger; external
name ’_p_UserID’;

{ Tries to change the real and/or effective user ID. }
function SetUserID (Real: CInteger; Effective: CInteger): Boolean;
external name ’_p_SetUserID’;

{ Returns the real or effective group ID of the process. }
function GroupID (Effective: Boolean): ClInteger; external
name ’_p_GroupID’;

{ Tries to change the real and/or effective group ID. }
function SetGroupID (Real: CInteger; Effective: Clnteger): Boolean;
external name ’_p_SetGroupID’;

Chapter 6: The Programmer’s Guide to GPC 129

{ Low-level file routines. Mostly for internal use. }

{ Get information about a file system. }

function StatFS (Path: CString; var Buf: StatFSBuffer): Boolean;
external name ’_p_StatFS’;

function CStringOpenDir (DirName: CString): Pointer; external
name ’_p_CStringOpenDir’;

function CStringReadDir (Dir: Pointer): CString; external
name ’_p_CStringReadDir’;

procedure CStringCloseDir (Dir: Pointer); external
name ’_p_CStringCloseDir’;

{ Returns the value of the symlink FileName in a CString allocated
from the heap. Returns nil if it is no symlink or the function
is not supported. }

function ReadLink (FileName: CString): CString; external
name ’_p_ReadlLink’;

{ Returns a pointer to a *static* buffer! }
function CStringRealPath (Path: CString): CString; external
name ’_p_CStringRealPath’;

{ File mode constants that are ORed for BindingType.Mode, ChMod,
CStringChMod and Stat. The values below are valid for all 0OSs
(as far as supported). If the 0S uses different values, they’re
converted internally. }

const
fm_SetUID = 8#4000;
fm_SetGID = 8#2000;
fm_Sticky = 8#1000;
fm_UserReadable = 8#400;
fm_UserWritable = 8#200;
fm_UserExecutable = 8#100;
fm_GroupReadable = 8#40;
fm_GroupWritable = 8#20;
fm_GroupExecutable = 8#10;
fm_OthersReadable = 8#4;
fm_OthersWritable = 8#2;
fm_OthersExecutable = 8#1;

{ Constants for Access and OpenHandle }

const
MODE_EXEC = 1 shl 0;
MODE_WRITE =1 shl 1;
MODE_READ 1 shl 2;
MODE_FILE 1 shl 3;
MODE_CREATE = 1 shl 4;
MODE_EXCL = 1 shl 5;
MODE_TRUNCATE = 1 shl 6;

130

The GNU Pascal Manual

MODE_APPEND
MODE_BINARY

1 shl 7;
1 shl 8;

{ Check if a file name is accessible. }
function Access (FileName: CString; Request: CInteger): Clnteger;
external name ’_p_Access’;

{ Get information about a file. Any argument except FileName can
be Null. }

function Stat (FileName: CString; var Size: FileSizeType;
var ATime: UnixTimeType; var MTime: UnixTimeType; var CTime:
UnixTimeType;
var User: ClInteger; var Group: CIlnteger; var Mode: CInteger; var
Device: CInteger; var INode: CInteger; var Links: Clnteger;
var SymLink: Boolean; var Dir: Boolean; var Special: Boolean):
CInteger; external name ’_p_Stat’;

function OpenHandle (FileName: CString; Mode: CInteger): Clnteger;
external name ’_p_OpenHandle’;

function ReadHandle (Handle: CInteger; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_ReadHandle’;

function WriteHandle (Handle: CInteger; Buffer: Pointer; Size:
SizeType): SignedSizeType; external name ’_p_WriteHandle’;

function CloseHandle (Handle: CInteger): CInteger; external
name ’_p_CloseHandle’;

procedure FlushHandle (Handle: CInteger); external
name ’_p_FlushHandle’;

function DupHandle (Src: CInteger; Dest: CInteger): CInteger;
external name ’_p_DupHandle’;

function SetFileMode (Handle: CInteger; Mode: CInteger; On:
Boolean): CInteger; attribute (ignorable); external
name ’_p_SetFileMode’;

function CStringRename (0ldName: CString; NewName: CString):
CInteger; external name ’_p_CStringRename’;

function CStringUnlink (FileName: CString): CInteger; external
name ’_p_CStringUnlink’;

function CStringChDir (FileName: CString): CInteger; external
name ’_p_CStringChDir’;

function CStringMkDir (FileName: CString): CInteger; external
name ’_p_CStringMkDir’;

function CStringRmDir (FileName: CString): CInteger; external
name ’_p_CStringRmDir’;

function UMask (Mask: CInteger): CInteger; attribute (ignorable);
external name ’_p_UMask’;

function CStringChMod (FileName: CString; Mode: CInteger):
CInteger; external name ’_p_CStringChMod’;

function CStringChOwn (FileName: CString; Owner: CInteger; Group:
CInteger): CInteger; external name ’_p_CStringChOwn’;

function CStringUTime (FileName: CString; AccessTime: UnixTimeType;
ModificationTime: UnixTimeType): CInteger; external

Chapter 6: The Programmer’s Guide to GPC 131

name ’_p_CStringUTime’;

{ Constants for SeekHandle }

const
SeekAbsolute = O;
SeekRelative = 1;
SeekFileEnd = 2;

{ Seek to a position on a file handle. }

function SeekHandle (Handle: CInteger; Offset: FileSizeType;
Whence: CInteger): FileSizeType; external name ’_p_SeekHandle’;

function TruncateHandle (Handle: CInteger; Size: FileSizeType):
CInteger; external name ’_p_TruncateHandle’;

function LockHandle (Handle: CInteger; WriteLock: Boolean; Block:
Boolean): Boolean; external name ’_p_LockHandle’;

function UnlockHandle (Handle: CInteger): Boolean; external
name ’_p_UnlockHandle’;

function SelectHandle (Count: CInteger; var Events:
InternalSelectType; MicroSeconds: MicroSecondTimeType): CInteger;
external name ’_p_SelectHandle’;

{ Constants for MMapHandle and MemoryMap }
const

mm_Readable =1;
mm_Writable = 2;
mm_Executable = 4;

{ Try to map (a part of) a file to memory. }

function MMapHandle (Start: Pointer; Length: SizeType; Access:
CInteger; Shared: Boolean; Handle: CInteger; Offset:
FileSizeType): Pointer; external name ’_p_MMapHandle’;

{ Unmap a previous memory mapping. }
function MUnMapHandle (Start: Pointer; Length: SizeType): Clnteger;
external name ’_p_MUnMapHandle’;

{ Returns the file name of the terminal device that is open on
Handle. Returns nil if (and only if) Handle is not open or not
connected to a terminal. If NeedName is False, it doesn’t bother
to search for the real name and just returns DefaultName if it
is a terminal and nil otherwise. DefaultName is also returned if
NeedName is True, Handle is connected to a terminal, but the
system does not provide information about the real file name. }

function GetTerminalNameHandle (Handle: CInteger; NeedName:
Boolean; DefaultName: CString): CString; external
name ’_p_GetTerminalNameHandle’;

{ System routines }

132 The GNU Pascal Manual

{ Sets the process group of Process (or the current one if Process
is 0) to ProcessGroup (or its PID if ProcessGroup is 0). Returns
True if successful. }

function SetProcessGroup (Process: CInteger; ProcessGroup:
CInteger): Boolean; external name ’_p_SetProcessGroup’;

{ Sets the process group of a terminal given by Terminal (as a file
handle) to ProcessGroup. ProcessGroup must be the ID of a process
group in the same session. Returns True if successful. }

function SetTerminalProcessGroup (Handle: CInteger; ProcessGroup:
CInteger): Boolean; external name ’_p_SetTerminalProcessGroup’;

{ Returns the process group of a terminal given by Terminal (as a
file handle), or -1 on error. }

function GetTerminalProcessGroup (Handle: CInteger): Clnteger;
external name ’_p_GetTerminalProcessGroup’;

{ Set the standard input’s signal generation, if it is a terminal. }
procedure SetInputSignals (Signals: Boolean); external
name ’_p_SetInputSignals’;

{ Get the standard input’s signal generation, if it is a terminal. }
function GetInputSignals: Boolean; external
name ’_p_GetInputSignals’;

{ Internal routines }

{ Returns system information if available. Fields not available will
be set to nil. }

procedure CStringSystemInfo (var SysName: CString; var NodeName:
CString; var Release: CString; var Version: CString; var Machine:
CString; var DomainName: CString); external
name ’_p_CStringSystemInfo’;

{ Returns the path of the running executable *if possible*. }
function CStringExecutablePath (Buffer: CString): CString; external
name ’_p_CStringExecutablePath’;

{ Sets ErrNo to the value of ‘errno’ and returns the description
for this error. May return nil if not supported! ErrNo may be
Null (then only the description is returned). }

function CStringStrError (var ErrNo: CInteger): CString; external
name ’_p_CStringStrError’;

{ Mathematical routines, from math.pas }

function LnlPlus (x: Real) = y: Real; attribute (const, name
= ’_p_Ln1Plus’); external;

Chapter 6: The Programmer’s Guide to GPC 133

{ String handling routines (lower level), from stringl.pas }

{ TString is a string type that is used for function results and
local variables, as long as undiscriminated strings are not
allowed there. The default size of 2048 characters should be
enough for file names on any system, but can be changed when
necessary. It should be at least as big as MAXPATHLEN. }

const
MaxLongInt = High (LongInt);

TStringSize = 2048;

SpaceCharacters = [’ ’, #9];

NewLine = "\n"; { the separator of lines within a string }
LineBreak = {$if defined (__0S_DOS__) and not defined (__CYGWIN__)
and not defined (__MSYS__)}

n \r\nll
{$else}
n \Il"
{$endif}; { the separator of lines within a file }
type
TString = String (TStringSize);
TStringBuf = packed array [0 .. TStringSize] of Char;
CharSet = set of Char;
Stré4 = String (64);

TInteger2StringBase = Cardinal(2) .. Cardinal(36);
TInteger2StringWidth = 0 .. High (TString);

var
NumericBaseDigits: array [0 .. 35] of Char; attribute (const, name
= ’_p_NumericBaseDigits’); external;
NumericBaseDigitsUpper: array [0 .. 35] of Char; attribute (const,

name = ’_p_NumericBaseDigitsUpper’); external;
CParamCount: Integer; attribute (name = ’_p_CParamCount’);
external;
CParameters: PCStrings; attribute (name = ’_p_CParameters’);
external;

function MemCmp (const sl, s2; Size: SizeType): Clnteger;
external name ’memcmp’;

function MemComp (const s1, s2; Size: SizeType): Clnteger;

external name ’memcmp’;
function MemCompCase (const sl, s2; Size: SizeType): Boolean;
attribute (name = ’_p_MemCompCase’); external;

procedure UpCaseString (var s: String); attribute (name
= ’_p_UpCaseString’); external;

134 The GNU Pascal Manual

procedure LoCaseString (var s: String); attribute (name
= ’_p_LoCaseString’); external;

function UpCaseStr (const s: String) = Result: TString;
attribute (name = ’_p_UpCaseStr’); external;

function LoCaseStr (const s: String) = Result: TString;

attribute (name = ’_p_LoCaseStr’); external;

function StrEqualCase (const sl: String; const s2: String):
Boolean; attribute (name = ’_p_StrEqualCase’); external;

function Pos (const SubString: String; const s:
String): Integer; attribute (name = ’_p_Pos’); external;

function PosChar (const ch: Char; const s: String):
Integer; attribute (name = ’_p_PosChar’); external;

function LastPos (const SubString: String; const s:
String): Integer; attribute (name = ’_p_LastPos’); external;

function PosCase (const SubString: String; const s:
String): Integer; attribute (name = ’_p_PosCase’); external;

function LastPosCase (const SubString: String; const s:
String): Integer; attribute (name = ’_p_LastPosCase’); external;

function CharPos (const Chars: CharSet; const s: String):
Integer; attribute (name = ’_p_CharPos’); external;

function LastCharPos (const Chars: CharSet; const s: String):

Integer; attribute (name = ’_p_LastCharPos’); external;

function PosFrom (const SubString: String; const s: String;
From: Integer): Integer; attribute (name = ’_p_PosFrom’);
external;

function LastPosTill (const SubString: String; const s: String;
Till: Integer): Integer; attribute (name = ’_p_LastPosTill’);
external;

function PosFromCase (const SubString: String; const s: String;
From: Integer): Integer; attribute (name = ’_p_PosFromCase’);
external;

function LastPosTillCase (const SubString: String; const s: String;
Till: Integer): Integer; attribute (name = ’_p_LastPosTillCase’);
external;

function CharPosFrom (const Chars: CharSet; const s: String;
From: Integer): Integer; attribute (name = ’_p_CharPosFrom’);
external;

function LastCharPosTill (const Chars: CharSet; const s: String;
Till: Integer): Integer; attribute (name = ’_p_LastCharPosTill’);
external;

function IsPrefix (const Prefix: String; const s: String):
Boolean; attribute (name = ’_p_IsPrefix’); external;

function IsSuffix (const Suffix: String; const s: String):

Boolean; attribute (name = ’_p_IsSuffix’); external;
function IsPrefixCase (const Prefix: String; const s: String):

Chapter 6: The Programmer’s Guide to GPC 135

Boolean; attribute (name = ’_p_IsPrefixCase’); external;

function IsSuffixCase (const Suffix: String; const s: String):
Boolean; attribute (name = ’_p_IsSuffixCase’); external;

function CStringlength (Src: CString): SizeType; attribute
(inline, name = ’_p_CStringlength’); external;

function CStringEnd (Src: CString): CString; attribute
(inline, name = ’_p_CStringEnd’); external;

function CStringNew (Src: CString): CString; attribute
(name = ’_p_CStringNew’); external;

function CStringComp (s1, s2: CString): Integer; attribute
(name = ’_p_CStringComp’); external;

function CStringCaseComp (s1, s2: CString): Integer; attribute
(name = ’_p_CStringCaseComp’); external;

function CStringlComp (s1, s2: CString; MaxLen: SizeType):

Integer; attribute (name = ’_p_CStringLComp’); external;
function CStringLCaseComp (s1, s2: CString; MaxLen: SizeType):
Integer; attribute (name = ’_p_CStringLCaseComp’); external;

function CStringCopy (Dest, Source: CString): CString;
attribute (ignorable, name = ’_p_CStringCopy’); external;

function CStringCopyEnd (Dest, Source: CString): CString;
attribute (ignorable, name = ’_p_CStringCopyEnd’); external;

function CStringLCopy (Dest, Source: CString; MaxLen:

SizeType): CString; attribute (ignorable, name
= ’_p_CStringlCopy’); external;
function CStringMove (Dest, Source: CString; Count:
SizeType): CString; attribute (ignorable, name
= ’_p_CStringMove’); external;

function CStringCat (Dest, Source: CString): CString;
attribute (ignorable, name = ’_p_CStringCat’); external;
function CStringlCat (Dest, Source: CString; MaxLen:

SizeType): CString; attribute (ignorable, name
= ’_p_CStringlCat’); external;

function CStringChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringChPos’); external;

function CStringlLastChPos (Src: CString; ch: Char): CString;
attribute (inline, name = ’_p_CStringLastChPos’); external;

function CStringPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringPos’); external;

function CStringlLastPos (s, SubString: CString): CString;
attribute (name = ’_p_CStringlastPos’); external;

function CStringCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringCasePos’); external;

function CStringlastCasePos (s, SubString: CString): CString;
attribute (name = ’_p_CStringlastCasePos’); external;

function CStringUpCase (s: CString): CString; attribute (name
= ’_p_CStringUpCase’); external;

function CStringLoCase (s: CString): CString; attribute (name

= ’_p_CStringloCase’); external;

136 The GNU Pascal Manual

function CStringIsEmpty (s: CString): Boolean; attribute (name
= ’_p_CStringIsEmpty’); external;

function NewCString (const Source: String): CString;
attribute (name = ’_p_NewCString’); external;

function CStringCopyString (Dest: CString; const Source: String):
CString; attribute (name = ’_p_CStringCopyString’); external;

procedure CopyCString (Source: CString; var Dest: String);
attribute (name = ’_p_CopyCString’); external;

function NewString (const s: String) = Result: PString;
attribute (name = ’_p_NewString’); external;

procedure DisposeString (p: PString); external name ’_p_Dispose’;

procedure SetString (var s: String; Buffer: PChar; Count:
Integer); attribute (name = ’_p_SetString’); external;

function String0fChar (ch: Char; Count: Integer) = s: TString;
attribute (name = ’_p_String0fChar’); external;

procedure TrimLeft (var s: String); attribute (name
=’ _p_TrimLeft’); external;

procedure TrimRight (var s: String); attribute (name
= ’_p_TrimRight’); external;

procedure TrimBoth (var s: String); attribute (name
= ’_p_TrimBoth’); external;

function TrimLeftStr (const s: String) = Result: TString;
attribute (name = ’_p_TrimLeftStr’); external;

function TrimRightStr (const s: String) = Result: TString;
attribute (name = ’_p_TrimRightStr’); external;

function TrimBothStr (const s: String) = Result: TString;
attribute (name = ’_p_TrimBothStr’); external;

function LTrim (const s: String) = Result: TString;

external name ’_p_TrimLeftStr’;

function GetStringCapacity (const s: String): Integer; attribute
(name = ’_p_GetStringCapacity’); external;

{ A shortcut for a common use of WriteStr as a function }
function Integer2String (i: Integer) = s: Str64; attribute (name
= ’_p_Integer2String’); external;

{ Convert integer n to string in base Base. }
function Integer2StringBase (n: LongestInt; Base:
TInteger2StringBase): TString; attribute (name

= ’_p_Integer2StringBase’); external;

{ Convert integer n to string in base Base, with sign, optionally in
uppercase representation and with printed base, padded with
leading zeroes between ‘[<Sign>]<Base>#’ and the actual digits to
specified Width. }

Chapter 6: The Programmer’s Guide to GPC 137

function Integer2StringBaseExt (n: LongestInt; Base:
TInteger2StringBase; Width: TInteger2StringWidth; Upper: Boolean;
PrintBase: Boolean): TString; attribute (name
= ’_p_Integer2StringBaseExt’); external;

{ String handling routines (higher level), from string2.pas }

type
PChars0O = “TCharsO;
TCharsO = array [0 .. MaxVarSize div SizeOf (Char) - 1] of Char;
PPChars0O = "TPCharsO;
TPCharsO = array [0 .. MaxVarSize div SizeOf (PChars0) - 1] of
PCharsO;

PChars = “TChars;
TChars = packed array [1 .. MaxVarSize div SizeOf (Char)] of Char;

{ Under development. Interface subject to change.
Use with caution. 7
{ When a const or var AnyString parameter is passed, internally
these records are passed as const parameters. Value AnyString
parameters are passed like value string parameters. }
ConstAnyString = record
Length: Integer;
Chars: PChars
end;

{ Capacity is the allocated space (used internally). Count is the
actual number of environment strings. The CStrings array
contains the environment strings, terminated by a nil pointer,
which is not counted in Count. @CStrings can be passed to libc
routines like execve which expect an environment (see
GetCEnvironment). }

PEnvironment = “TEnvironment;

TEnvironment (Capacity: Integer) = record
Count: Integer;

CStrings: array [1 .. Capacity + 1] of CString
end;

var
Environment: PEnvironment; attribute (name = ’_p_Environment’);
external;

{ Get an environment variable. If it does not exist, GetEnv returns
the empty string, which can’t be distinguished from a variable
with an empty value, while CStringGetEnv returns nil then. Note,
Dos doesn’t know empty environment variables, but treats them as
non-existing, and does not distinguish case in the names of

138

The GNU Pascal Manual

environment variables. However, even under Dos, empty environment
variables and variable names with different case can now be set
and used within GPC programs. }

function GetEnv (const EnvVar: String): TString; attribute (name
= ’_p_GetEnv’); external;

function CStringGetEnv (EnvVar: CString): CString; attribute (name
= ’_p_CStringGetEnv’); external;

{ Sets an environment variable with the name given in VarName to the
value Value. A previous value, if any, is overwritten. }

procedure SetEnv (const VarName: String; const Value: String);
attribute (name = ’_p_SetEnv’); external;

{ Un-sets an environment variable with the name given in VarName. }
g
procedure UnSetEnv (const VarName: String); attribute (name
= ’_p_UnSetEnv’); external;

{ Returns @Environment”.CStrings, converted to PCStrings, to be
passed to libc routines like execve which expect an environment. 7
function GetCEnvironment: PCStrings; attribute (name
= ’_p_GetCEnvironment’); external;

type
FormatStringTransformType = “function (const Format: String):
TString;

var
FormatStringTransformPtr: FormatStringTransformType; attribute
(name = ’_p_FormatStringTransformPtr’); external;

{ Runtime error and signal handling routines, from error.pas }

const
EAssert = 306;
EAssertString = 307;

EOpen = 405;
EMMap = 408;
ERead = 413;

EWrite = 414;
EWriteReadOnly = 422;
ENonExistentFile = 436;
EOpenRead = 442;
EOpenWrite = 443;
EOpenUpdate = 444;
EReading = 464;
EWriting = 466;
ECannotWriteAll = 467;
ECannotFork = 600;
ECannotSpawn = 601;

Chapter 6: The Programmer’s Guide to GPC 139

EProgramNotFound = 602;
EProgramNotExecutable = 603;

EPipe = 604;
EPrinterRead = 610;
EIOCtl = 630;

EConvertError = 875;
ELibraryFunction = 952;
EExitReturned = 953;

RuntimeErrorExitValue = 42;

var

{ Error number (after runtime error) or exit status (after Halt)
or 0 (during program run and after succesful termination). }
ExitCode: Integer; attribute (name = ’_p_ExitCode’); external;

{ Contains the address of the code where a runtime occurred, nil
if no runtime error occurred. }
ErrorAddr: Pointer; attribute (name = ’_p_ErrorAddr’); external;

{ Error message }
ErrorMessageString: TString; attribute (name
= ’_p_ErrorMessageString’); external;

{ String parameter to some error messages, *not* the text of the
error message (the latter can be obtained with
GetErrorMessage). }

InOutResString: PString; attribute (name = ’_p_InOutResString’);

external;

{ Optional libc error string to some error messages. }
InOutResCErrorString: PString; attribute (name
= ’_p_InOutResCErrorString’); external;

RTSErrorFD: Integer; attribute (name = ’_p_ErrorFD’); external;
RTSErrorFileName: PString; attribute (name = ’_p_ErrorFileName’);
external;

{ Finalize the GPC Run Time System. This is normally called
automatically. Call it manually only in very special situations. }
procedure GPC_Finalize;

attribute (name = ’_p_finalize’); external;
function GetErrorMessage (n: Integer): CString;
attribute (name = ’_p_GetErrorMessage’); external;
procedure RuntimeError (n: Integer); attribute
(noreturn, name = ’_p_RuntimeError’); external;
procedure RuntimeErrorErrNo (n: Integer); attribute
(noreturn, name = ’_p_RuntimeErrorErrNo’); external;

procedure RuntimeErrorInteger (n: Integer; i: MedInt);

140 The GNU Pascal Manual

attribute (noreturn, name = ’_p_RuntimeErrorInteger’); external;
procedure RuntimeErrorCString (n: Integer; s: CString);
attribute (noreturn, name = ’_p_RuntimeErrorCString’); external;
procedure InternalError (n: Integer); attribute
(noreturn, name = ’_p_InternalError’); external;
procedure InternalErrorInteger (n: Integer; i: MedInt);
attribute (noreturn, name = ’_p_InternalErrorInteger’); external;
procedure InternalErrorCString (n: Integer; s: CString);
attribute (noreturn, name = ’_p_InternalErrorCString’); external;
procedure RuntimeWarning (Message: CString);
attribute (name = ’_p_RuntimeWarning’); external;
procedure RuntimeWarningInteger (Message: CString; 1i:
MedInt); attribute (name = ’_p_RuntimeWarningInteger’); external;
procedure RuntimeWarningCString (Message: CString; s:
CString); attribute (name = ’_p_RuntimeWarningCString’); external;
procedure IOError (n: Integer; ErrNoFlag:
Boolean); attribute (iocritical, name = ’_p_IOError’); external;
procedure IOErrorInteger (n: Integer; i: MedInt;

ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_IOErrorInteger’); external;
procedure I0ErrorCString (n: Integer; s: CString;
ErrNoFlag: Boolean); attribute (iocritical, name
= ’_p_I0ErrorCString’); external;

function GetIOErrorMessage = Res: TString; attribute (name
= ’_p_GetIOErrorMessage’); external;

procedure CheckInOutRes; attribute (name = ’_p_CheckInOutRes’);
external;

{ Registers a procedure to be called to restore the terminal for
another process that accesses the terminal, or back for the
program itself. Used e.g. by the CRT unit. The procedures must
allow for being called multiple times in any order, even at the
end of the program (see the comment for RestoreTerminal). }

procedure RegisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc); attribute (name = ’_p_RegisterRestoreTerminal’);
external;

{ Unregisters a procedure registered with RegisterRestoreTerminal.
Returns False if the procedure had not been registered, and True
if it had been registered and was unregistered successfully. }

function UnregisterRestoreTerminal (ForAnotherProcess: Boolean;
procedure Proc): Boolean; attribute (name
= ’_p_UnregisterRestoreTerminal’); external;

{ Calls the procedures registered by RegisterRestoreTerminal. When
restoring the terminal for another process, the procedures are
called in the opposite order of registration. When restoring back

Chapter 6: The Programmer’s Guide to GPC 141

for the program, they are called in the order of registration.

‘RestoreTerminal (True)’ will also be called at the end of the
program, before outputting any runtime error message. It can also
be used if you want to write an error message and exit the program
(especially when using e.g. the CRT unit). For this purpose, to
avoid side effects, call RestoreTerminal immediately before
writing the error message (to StdErr, not to Output!), and then
exit the program (e.g. with Halt). }

procedure RestoreTerminal (ForAnotherProcess: Boolean); attribute

(name = ’_p_RestoreTerminal’); external;
procedure AtExit (procedure Proc); attribute (name = ’_p_AtExit’);
external;

function ReturnAddr2Hex (p: Pointer) = s: TString; attribute (name
= ’_p_ReturnAddr2Hex’); external;

{ This function is used to write error messages etc. It does not use
the Pascal I/0 system here because it is usually called at the
very end of a program after the Pascal I/0 system has been shut

down. }
function WriteErrorMessage (const s: String; StdErrFlag: Boolean):
Boolean; attribute (name = ’_p_WriteErrorMessage’); external;

procedure SetReturnAddress (Address: Pointer); attribute (name
= ’_p_SetReturnAddress’); external;

procedure RestoreReturnAddress; attribute (name
= ’_p_RestoreReturnAddress’); external;

{ Returns a description for a signal }
function StrSignal (Signal: Integer) = Res: TString; attribute
(name = ’_p_StrSignal’); external;

{ Installs some signal handlers that cause runtime errors on certain
signals. This procedure runs only once, and returns immediately
when called again (so you can’t use it to set the signals again if
you changed them meanwhile). @@Does not work on all systems (since
the handler might have too little stack space). 7}

procedure InstallDefaultSignalHandlers; attribute (name
= ’_p_InstallDefaultSignalHandlers’); external;

var
{ Signal actioms }
SignalDefault: TSignalHandler; attribute (const); external
name ’_p_SIG_DFL’;
Signallgnore : TSignalHandler; attribute (const); external
name ’_p_SIG_IGN’;
SignalError : TSignalHandler; attribute (const); external

142

name ’_p_SIG_ERR’;

The GNU Pascal Manual

{ Signals. The constants are set to the signal numbers, and
are 0 for signals not defined. }

{ POSIX signals }

SigHUp Integer;
SigInt Integer;
SigQuit Integer;
SigIll Integer;
SighAbrt Integer;
SigFPE Integer;
SigKill Integer;
SigSegV Integer;
SigPipe Integer;
SigAlrm Integer;
SigTerm Integer;
SigUsri Integer;
SigUsr2 Integer;
SigChld Integer;
SigCont Integer;
SigStop Integer;
SigTStp Integer;
SigTTIn Integer;
SigTT0Ou Integer;
{ Non-POSIX signals
SigTrap Integer;
SigI0T Integer;
SigEMT Integer;
SigBus Integer;
SigSys Integer;
SigStkFlt: Integer;
name ’_p_SIGSTKFLT’;
Siglrg Integer;
Sigl0 Integer;
SigPoll Integer;
SigXCPU Integer;
SigXFSz Integer;
SigVTAlrm: Integer;
name ’_p_SIGVTALRM’;
SigProf Integer;
SigPwr Integer;
SigInfo Integer;
SigLost Integer;
SigWinCh : Integer;

name ’_p_SIGWINCH’;

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

}

attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute
attribute
attribute
attribute

(const);
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const);
(const);
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const);
(const);

(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const);

(const) ;
(const) ;
(const) ;
(const) ;
(const) ;
(const) ;

(const);
(const);
(const) ;
(const) ;
(const) ;

external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external
external

external
external
external
external
external
external

external
external
external
external
external
external

external
external
external
external
external

name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name
name

name
name
name
name
name

name
name
name
name
name

name
name
name
name

> _p_SIGHUP’;
’_p_SIGINT’;
’_p_SIGQUIT’;
’_p_SIGILL’;
’_p_SIGABRT’;
’_p_SIGFPE’;
’_p_SIGKILL’;
’_p_SIGSEGV’;
’_p_SIGPIPE’;
> _p_SIGALRM’;
> _p_SIGTERM’;
’_p_SIGUSR1’;
’_p_SIGUSR2’;
>_p_SIGCHLD’;
>_p_SIGCONT’;
>_p_SIGSTOP’;
’_p_SIGTSTP’;
’_p_SIGTTIN’;
’_p_SIGTTOU’;

’_p_SIGTRAP’;
»_p_SIGIOT’;
»_p_SIGEMT’;
»_p_SIGBUS’;
’_p_SIGSYS’;

?_p_SIGURG’;
’_p_SIGIO’;
’_p_SIGPOLL’;
’_p_SIGXCPU’;
’_p_SIGXFSZ’;

’_p_SIGPROF’;
’_p_SIGPWR’;

’_p_SIGINFO’;
’_p_SIGLOST’;

{ Signal subcodes (only used on some systems, -1 if not used) }
Integer; attribute (const); external

FPEIntegerOverflow

Chapter 6: The Programmer’s Guide to GPC 143

name ’_p_FPE_INTOVF_TRAP’;
FPEIntegerDivisionByZero: Integer; attribute (const); external
name ’_p_FPE_INTDIV_TRAP’;

FPESubscriptRange : Integer; attribute (const); external
name ’_p_FPE_SUBRNG_TRAP’;
FPERealOverflow : Integer; attribute (const); external
name ’_p_FPE_FLTOVF_TRAP’;
FPERealDivisionByZero : Integer; attribute (const); external
name ’_p_FPE_FLTDIV_TRAP’;
FPERealUnderflow : Integer; attribute (const); external
name ’_p_FPE_FLTUND_TRAP’;
FPEDecimalOverflow : Integer; attribute (const); external

name ’_p_FPE_DECOVF_TRAP’;

{ Routines called implicitly by the compiler. }
procedure GPC_Assert (Condition: Boolean; const Message: String);

attribute (name = ’_p_Assert’); external;
function ObjectTypels (Left, Right: PObjectType): Boolean;
attribute (const, name = ’_p_0ObjectTypels’); external;

procedure ObjectTypeAsError; attribute (noreturn, name
= ’_p_ObjectTypeAsError’); external;
procedure DisposeNilError; attribute (noreturn, name
= ’_p_DisposeNilError’); external;
procedure CaseNoMatchError; attribute (noreturn, name
= ’_p_CaseNoMatchError’); external;
procedure DiscriminantsMismatchError; attribute (noreturn, name
= ’_p_DiscriminantsMismatchError’); external;
procedure NilPointerError; attribute (noreturn, name
= ’_p_NilPointerError’); external;
procedure InvalidPointerError (p: Pointer); attribute (noreturn,
name = ’_p_InvalidPointerError’); external;
procedure InvalidObjectError; attribute (noreturn, name
= ’_p_InvalidObjectError’); external;
procedure RangeCheckError; attribute (noreturn, name
= ’_p_RangeCheckError’); external;
procedure IORangeCheckError; attribute (name
= ’_p_IORangeCheckError’); external;
procedure SubrangeError; attribute (noreturn, name
= ’_p_SubrangeError’); external;
procedure ModRangeError; attribute (noreturn, name
= ’_p_ModRangeError’); external;

{ Pointer checking with ‘--pointer-checking-user-defined’ }

procedure DefaultValidatePointer (p: Pointer); attribute (name
= ’_p_DefaultValidatePointer’); external;

type
ValidatePointerType = “procedure (p: Pointer);

144 The GNU Pascal Manual

var
ValidatePointerPtr: ValidatePointerType; attribute (name
= ’_p_ValidatePointerPtr’); external;

{ Time and date routines, from time.pas }

const
InvalidYear = -MaxInt;

var
{ DayOfWeekName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }
DayOfWeekName: array [0 .. 6] of String [9]; attribute (const,
name = ’_p_DayOfWeekName’); external;

{ MonthName is a constant and therefore does not respect the
locale. Therefore, it’s recommended to use FormatTime instead. }

MonthName: array [1 .. 12] of String [9]; attribute (const, name

= ’_p_MonthName’); external;

function GetDayOfWeek (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetDayOfWeek’); external;

function GetDayOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetDayOfYear’); external;

function GetSundayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetSundayWeekOfYear’); external;

function GetMondayWeekOfYear (Day, Month, Year: Integer): Integer;
attribute (name = ’_p_GetMondayWeekOfYear’); external;

procedure GetISOWeekOfYear (Day, Month, Year: Integer; var ISOWeek,
ISOWeekYear: Integer); attribute (name = ’_p_GetISOWeekOfYear’);
external;

procedure UnixTimeToTimeStamp (UnixTime: UnixTimeType; var
aTimeStamp: TimeStamp); attribute (name
= ’_p_UnixTimeToTimeStamp’); external;

function TimeStampToUnixTime (protected var aTimeStamp: TimeStamp):
UnixTimeType; attribute (name = ’_p_TimeStampToUnixTime’);
external;

function GetMicroSecondTime: MicroSecondTimeType; attribute (name
= ’_p_GetMicroSecondTime’); external;

{ Is the year a leap year? }
function IsLeapYear (Year: Integer): Boolean; attribute (name
= ’_p_IsLeapYear’); external;

{ Returns the length of the month, taking leap years into account. }
function MonthLength (Month, Year: Integer): Integer; attribute
(name = ’_p_MonthLength’); external;

Chapter 6: The Programmer’s Guide to GPC 145

{ Formats a TimeStamp value according to a Format string. The format
string can contain date/time items consisting of ‘%’, followed by
the specifiers listed below. All characters outside of these items
are copied to the result unmodified. The specifiers correspond to
those of the C function strftime(), including POSIX.2 and glibc
extensions and some more extensions. The extensions are also
available on systems whose strftime() doesn’t support them.

The following modifiers may appear after the ‘%’:

¢_? The item is left padded with spaces to the given or default
width.

¢~> The item is not padded at all.

‘0’ The item is left padded with zeros to the given or default
width.

¢/’ The item is right trimmed if it is longer than the given
width.

€72 The item is converted to upper case.
¢~> The item is converted to lo